Mathijs Wintraecken
Edelsbrunner Group
18 Publications
2023 | Published | Journal Article | IST-REx-ID: 12287 |

Boissonnat, J.-D., Dyer, R., Ghosh, A., & Wintraecken, M. (2023). Local criteria for triangulating general manifolds. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00431-7
[Published Version]
View
| Files available
| DOI
| WoS
2023 | Published | Journal Article | IST-REx-ID: 12763 |

Boissonnat, J. D., & Wintraecken, M. (2023). The reach of subsets of manifolds. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-023-00116-x
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2023 | Published | Journal Article | IST-REx-ID: 12960 |

Boissonnat, J. D., Kachanovich, S., & Wintraecken, M. (2023). Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/21M1412918
[Submitted Version]
View
| Files available
| DOI
| Download Submitted Version (ext.)
| WoS
2023 | Published | Conference Paper | IST-REx-ID: 13048 |

Lieutier, A., & Wintraecken, M. (2023). Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (pp. 1768–1776). Orlando, FL, United States: Association for Computing Machinery. https://doi.org/10.1145/3564246.3585113
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 11428 |

Chambers, E., Fillmore, C. D., Stephenson, E. R., & Wintraecken, M. (2022). A cautionary tale: Burning the medial axis is unstable. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (Vol. 224, p. 66:1-66:9). Berlin, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2022.66
[Published Version]
View
| Files available
| DOI
2022 | Published | Journal Article | IST-REx-ID: 9649 |

Boissonnat, J.-D., & Wintraecken, M. (2022). The topological correctness of PL approximations of isomanifolds. Foundations of Computational Mathematics . Springer Nature. https://doi.org/10.1007/s10208-021-09520-0
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8248 |

Boissonnat, J.-D., Dyer, R., Ghosh, A., Lieutier, A., & Wintraecken, M. (2021). Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00233-9
[Published Version]
View
| DOI
| Download Published Version (ext.)
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8940 |

Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00250-8
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Conference Paper | IST-REx-ID: 9345 |

Edelsbrunner, H., Heiss, T., Kurlin , V., Smith, P., & Wintraecken, M. (2021). The density fingerprint of a periodic point set. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 32:1-32:16). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.32
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9441 |

Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 17:1-17:16). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.17
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 7567 |

Choudhary, A., Kachanovich, S., & Wintraecken, M. (2020). Coxeter triangulations have good quality. Mathematics in Computer Science. Springer Nature. https://doi.org/10.1007/s11786-020-00461-5
[Published Version]
View
| Files available
| DOI
2020 | Published | Conference Paper | IST-REx-ID: 7952 |

Boissonnat, J.-D., & Wintraecken, M. (2020). The topological correctness of PL-approximations of isomanifolds. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.20
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 8163 |

Vegter, G., & Wintraecken, M. (2020). Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó. https://doi.org/10.1556/012.2020.57.2.1454
[Published Version]
View
| Files available
| DOI
| WoS
2019 | Published | Journal Article | IST-REx-ID: 6515 |

Dyer, R., Vegter, G., & Wintraecken, M. (2019). Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . Carleton University. https://doi.org/10.20382/jocg.v10i1a9
[Published Version]
View
| Files available
| DOI
2019 | Published | Conference Paper | IST-REx-ID: 6628 |

Vegter, G., & Wintraecken, M. (2019). The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In The 31st Canadian Conference in Computational Geometry (pp. 275–279). Edmonton, Canada.
[Submitted Version]
View
| Files available
2019 | Published | Journal Article | IST-REx-ID: 6671 |

Boissonnat, J.-D., Lieutier, A., & Wintraecken, M. (2019). The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-019-00029-8
[Published Version]
View
| Files available
| DOI
2019 | Published | Journal Article | IST-REx-ID: 6672 |

Boissonnat, J.-D., Rouxel-Labbé, M., & Wintraecken, M. (2019). Anisotropic triangulations via discrete Riemannian Voronoi diagrams. SIAM Journal on Computing. Society for Industrial & Applied Mathematics (SIAM). https://doi.org/10.1137/17m1152292
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1022 |

Pranav, P., Edelsbrunner, H., Van De Weygaert, R., Vegter, G., Kerber, M., Jones, B., & Wintraecken, M. (2017). The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stw2862
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
Grants
18 Publications
2023 | Published | Journal Article | IST-REx-ID: 12287 |

Boissonnat, J.-D., Dyer, R., Ghosh, A., & Wintraecken, M. (2023). Local criteria for triangulating general manifolds. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00431-7
[Published Version]
View
| Files available
| DOI
| WoS
2023 | Published | Journal Article | IST-REx-ID: 12763 |

Boissonnat, J. D., & Wintraecken, M. (2023). The reach of subsets of manifolds. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-023-00116-x
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2023 | Published | Journal Article | IST-REx-ID: 12960 |

Boissonnat, J. D., Kachanovich, S., & Wintraecken, M. (2023). Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/21M1412918
[Submitted Version]
View
| Files available
| DOI
| Download Submitted Version (ext.)
| WoS
2023 | Published | Conference Paper | IST-REx-ID: 13048 |

Lieutier, A., & Wintraecken, M. (2023). Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (pp. 1768–1776). Orlando, FL, United States: Association for Computing Machinery. https://doi.org/10.1145/3564246.3585113
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 11428 |

Chambers, E., Fillmore, C. D., Stephenson, E. R., & Wintraecken, M. (2022). A cautionary tale: Burning the medial axis is unstable. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (Vol. 224, p. 66:1-66:9). Berlin, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2022.66
[Published Version]
View
| Files available
| DOI
2022 | Published | Journal Article | IST-REx-ID: 9649 |

Boissonnat, J.-D., & Wintraecken, M. (2022). The topological correctness of PL approximations of isomanifolds. Foundations of Computational Mathematics . Springer Nature. https://doi.org/10.1007/s10208-021-09520-0
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8248 |

Boissonnat, J.-D., Dyer, R., Ghosh, A., Lieutier, A., & Wintraecken, M. (2021). Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00233-9
[Published Version]
View
| DOI
| Download Published Version (ext.)
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8940 |

Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00250-8
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Conference Paper | IST-REx-ID: 9345 |

Edelsbrunner, H., Heiss, T., Kurlin , V., Smith, P., & Wintraecken, M. (2021). The density fingerprint of a periodic point set. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 32:1-32:16). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.32
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9441 |

Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 17:1-17:16). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.17
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 7567 |

Choudhary, A., Kachanovich, S., & Wintraecken, M. (2020). Coxeter triangulations have good quality. Mathematics in Computer Science. Springer Nature. https://doi.org/10.1007/s11786-020-00461-5
[Published Version]
View
| Files available
| DOI
2020 | Published | Conference Paper | IST-REx-ID: 7952 |

Boissonnat, J.-D., & Wintraecken, M. (2020). The topological correctness of PL-approximations of isomanifolds. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.20
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 8163 |

Vegter, G., & Wintraecken, M. (2020). Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó. https://doi.org/10.1556/012.2020.57.2.1454
[Published Version]
View
| Files available
| DOI
| WoS
2019 | Published | Journal Article | IST-REx-ID: 6515 |

Dyer, R., Vegter, G., & Wintraecken, M. (2019). Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . Carleton University. https://doi.org/10.20382/jocg.v10i1a9
[Published Version]
View
| Files available
| DOI
2019 | Published | Conference Paper | IST-REx-ID: 6628 |

Vegter, G., & Wintraecken, M. (2019). The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In The 31st Canadian Conference in Computational Geometry (pp. 275–279). Edmonton, Canada.
[Submitted Version]
View
| Files available
2019 | Published | Journal Article | IST-REx-ID: 6671 |

Boissonnat, J.-D., Lieutier, A., & Wintraecken, M. (2019). The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-019-00029-8
[Published Version]
View
| Files available
| DOI
2019 | Published | Journal Article | IST-REx-ID: 6672 |

Boissonnat, J.-D., Rouxel-Labbé, M., & Wintraecken, M. (2019). Anisotropic triangulations via discrete Riemannian Voronoi diagrams. SIAM Journal on Computing. Society for Industrial & Applied Mathematics (SIAM). https://doi.org/10.1137/17m1152292
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1022 |

Pranav, P., Edelsbrunner, H., Van De Weygaert, R., Vegter, G., Kerber, M., Jones, B., & Wintraecken, M. (2017). The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stw2862
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS