Mathijs Wintraecken
Edelsbrunner Group
18 Publications
2023 | Published | Journal Article | IST-REx-ID: 12287 |

Boissonnat J-D, Dyer R, Ghosh A, Wintraecken M. Local criteria for triangulating general manifolds. Discrete & Computational Geometry. 2023;69:156-191. doi:10.1007/s00454-022-00431-7
[Published Version]
View
| Files available
| DOI
| WoS
2023 | Published | Journal Article | IST-REx-ID: 12763 |

Boissonnat JD, Wintraecken M. The reach of subsets of manifolds. Journal of Applied and Computational Topology. 2023;7:619-641. doi:10.1007/s41468-023-00116-x
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2023 | Published | Journal Article | IST-REx-ID: 12960 |

Boissonnat JD, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 2023;52(2):452-486. doi:10.1137/21M1412918
[Submitted Version]
View
| Files available
| DOI
| Download Submitted Version (ext.)
| WoS
2023 | Published | Conference Paper | IST-REx-ID: 13048 |

Lieutier A, Wintraecken M. Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing. Association for Computing Machinery; 2023:1768-1776. doi:10.1145/3564246.3585113
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 11428 |

Chambers E, Fillmore CD, Stephenson ER, Wintraecken M. A cautionary tale: Burning the medial axis is unstable. In: Goaoc X, Kerber M, eds. 38th International Symposium on Computational Geometry. Vol 224. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2022:66:1-66:9. doi:10.4230/LIPIcs.SoCG.2022.66
[Published Version]
View
| Files available
| DOI
2022 | Published | Journal Article | IST-REx-ID: 9649 |

Boissonnat J-D, Wintraecken M. The topological correctness of PL approximations of isomanifolds. Foundations of Computational Mathematics . 2022;22:967-1012. doi:10.1007/s10208-021-09520-0
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8248 |

Boissonnat J-D, Dyer R, Ghosh A, Lieutier A, Wintraecken M. Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. 2021;66:666-686. doi:10.1007/s00454-020-00233-9
[Published Version]
View
| DOI
| Download Published Version (ext.)
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8940 |

Boissonnat J-D, Kachanovich S, Wintraecken M. Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. 2021;66(1):386-434. doi:10.1007/s00454-020-00250-8
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Conference Paper | IST-REx-ID: 9345 |

Edelsbrunner H, Heiss T, Kurlin V, Smith P, Wintraecken M. The density fingerprint of a periodic point set. In: 37th International Symposium on Computational Geometry (SoCG 2021). Vol 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021:32:1-32:16. doi:10.4230/LIPIcs.SoCG.2021.32
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9441 |

Boissonnat J-D, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In: 37th International Symposium on Computational Geometry (SoCG 2021). Vol 189. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021:17:1-17:16. doi:10.4230/LIPIcs.SoCG.2021.17
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 7567 |

Choudhary A, Kachanovich S, Wintraecken M. Coxeter triangulations have good quality. Mathematics in Computer Science. 2020;14:141-176. doi:10.1007/s11786-020-00461-5
[Published Version]
View
| Files available
| DOI
2020 | Published | Conference Paper | IST-REx-ID: 7952 |

Boissonnat J-D, Wintraecken M. The topological correctness of PL-approximations of isomanifolds. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.20
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 8163 |

Vegter G, Wintraecken M. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 2020;57(2):193-199. doi:10.1556/012.2020.57.2.1454
[Published Version]
View
| Files available
| DOI
| WoS
2019 | Published | Journal Article | IST-REx-ID: 6515 |

Dyer R, Vegter G, Wintraecken M. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 2019;10(1):223–256. doi:10.20382/jocg.v10i1a9
[Published Version]
View
| Files available
| DOI
2019 | Published | Conference Paper | IST-REx-ID: 6628 |

Vegter G, Wintraecken M. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In: The 31st Canadian Conference in Computational Geometry. ; 2019:275-279.
[Submitted Version]
View
| Files available
2019 | Published | Journal Article | IST-REx-ID: 6671 |

Boissonnat J-D, Lieutier A, Wintraecken M. The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. 2019;3(1-2):29–58. doi:10.1007/s41468-019-00029-8
[Published Version]
View
| Files available
| DOI
2019 | Published | Journal Article | IST-REx-ID: 6672 |

Boissonnat J-D, Rouxel-Labbé M, Wintraecken M. Anisotropic triangulations via discrete Riemannian Voronoi diagrams. SIAM Journal on Computing. 2019;48(3):1046-1097. doi:10.1137/17m1152292
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1022 |

Pranav P, Edelsbrunner H, Van De Weygaert R, et al. The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. 2017;465(4):4281-4310. doi:10.1093/mnras/stw2862
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
Grants
18 Publications
2023 | Published | Journal Article | IST-REx-ID: 12287 |

Boissonnat J-D, Dyer R, Ghosh A, Wintraecken M. Local criteria for triangulating general manifolds. Discrete & Computational Geometry. 2023;69:156-191. doi:10.1007/s00454-022-00431-7
[Published Version]
View
| Files available
| DOI
| WoS
2023 | Published | Journal Article | IST-REx-ID: 12763 |

Boissonnat JD, Wintraecken M. The reach of subsets of manifolds. Journal of Applied and Computational Topology. 2023;7:619-641. doi:10.1007/s41468-023-00116-x
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2023 | Published | Journal Article | IST-REx-ID: 12960 |

Boissonnat JD, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 2023;52(2):452-486. doi:10.1137/21M1412918
[Submitted Version]
View
| Files available
| DOI
| Download Submitted Version (ext.)
| WoS
2023 | Published | Conference Paper | IST-REx-ID: 13048 |

Lieutier A, Wintraecken M. Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing. Association for Computing Machinery; 2023:1768-1776. doi:10.1145/3564246.3585113
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 11428 |

Chambers E, Fillmore CD, Stephenson ER, Wintraecken M. A cautionary tale: Burning the medial axis is unstable. In: Goaoc X, Kerber M, eds. 38th International Symposium on Computational Geometry. Vol 224. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2022:66:1-66:9. doi:10.4230/LIPIcs.SoCG.2022.66
[Published Version]
View
| Files available
| DOI
2022 | Published | Journal Article | IST-REx-ID: 9649 |

Boissonnat J-D, Wintraecken M. The topological correctness of PL approximations of isomanifolds. Foundations of Computational Mathematics . 2022;22:967-1012. doi:10.1007/s10208-021-09520-0
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8248 |

Boissonnat J-D, Dyer R, Ghosh A, Lieutier A, Wintraecken M. Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. 2021;66:666-686. doi:10.1007/s00454-020-00233-9
[Published Version]
View
| DOI
| Download Published Version (ext.)
| WoS
2021 | Published | Journal Article | IST-REx-ID: 8940 |

Boissonnat J-D, Kachanovich S, Wintraecken M. Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. 2021;66(1):386-434. doi:10.1007/s00454-020-00250-8
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Conference Paper | IST-REx-ID: 9345 |

Edelsbrunner H, Heiss T, Kurlin V, Smith P, Wintraecken M. The density fingerprint of a periodic point set. In: 37th International Symposium on Computational Geometry (SoCG 2021). Vol 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021:32:1-32:16. doi:10.4230/LIPIcs.SoCG.2021.32
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9441 |

Boissonnat J-D, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In: 37th International Symposium on Computational Geometry (SoCG 2021). Vol 189. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021:17:1-17:16. doi:10.4230/LIPIcs.SoCG.2021.17
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 7567 |

Choudhary A, Kachanovich S, Wintraecken M. Coxeter triangulations have good quality. Mathematics in Computer Science. 2020;14:141-176. doi:10.1007/s11786-020-00461-5
[Published Version]
View
| Files available
| DOI
2020 | Published | Conference Paper | IST-REx-ID: 7952 |

Boissonnat J-D, Wintraecken M. The topological correctness of PL-approximations of isomanifolds. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.20
[Published Version]
View
| Files available
| DOI
2020 | Published | Journal Article | IST-REx-ID: 8163 |

Vegter G, Wintraecken M. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 2020;57(2):193-199. doi:10.1556/012.2020.57.2.1454
[Published Version]
View
| Files available
| DOI
| WoS
2019 | Published | Journal Article | IST-REx-ID: 6515 |

Dyer R, Vegter G, Wintraecken M. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 2019;10(1):223–256. doi:10.20382/jocg.v10i1a9
[Published Version]
View
| Files available
| DOI
2019 | Published | Conference Paper | IST-REx-ID: 6628 |

Vegter G, Wintraecken M. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In: The 31st Canadian Conference in Computational Geometry. ; 2019:275-279.
[Submitted Version]
View
| Files available
2019 | Published | Journal Article | IST-REx-ID: 6671 |

Boissonnat J-D, Lieutier A, Wintraecken M. The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. 2019;3(1-2):29–58. doi:10.1007/s41468-019-00029-8
[Published Version]
View
| Files available
| DOI
2019 | Published | Journal Article | IST-REx-ID: 6672 |

Boissonnat J-D, Rouxel-Labbé M, Wintraecken M. Anisotropic triangulations via discrete Riemannian Voronoi diagrams. SIAM Journal on Computing. 2019;48(3):1046-1097. doi:10.1137/17m1152292
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1022 |

Pranav P, Edelsbrunner H, Van De Weygaert R, et al. The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. 2017;465(4):4281-4310. doi:10.1093/mnras/stw2862
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS