A cautionary tale: Burning the medial axis is unstable

Chambers E, Fillmore CD, Stephenson ER, Wintraecken M. 2022. A cautionary tale: Burning the medial axis is unstable. 38th International Symposium on Computational Geometry. SoCG: Symposium on Computational GeometryLIPIcs vol. 224, 66:1-66:9.

Download
OA 2022_LIPICs_Chambers.pdf 17.58 MB [Published Version]

Conference Paper | Published | English

Scopus indexed
Editor
Goaoc, Xavier; Kerber, Michael
Department
Abstract
The medial axis of a set consists of the points in the ambient space without a unique closest point on the original set. Since its introduction, the medial axis has been used extensively in many applications as a method of computing a topologically equivalent skeleton. Unfortunately, one limiting factor in the use of the medial axis of a smooth manifold is that it is not necessarily topologically stable under small perturbations of the manifold. To counter these instabilities various prunings of the medial axis have been proposed. Here, we examine one type of pruning, called burning. Because of the good experimental results, it was hoped that the burning method of simplifying the medial axis would be stable. In this work we show a simple example that dashes such hopes based on Bing’s house with two rooms, demonstrating an isotopy of a shape where the medial axis goes from collapsible to non-collapsible.
Publishing Year
Date Published
2022-06-01
Proceedings Title
38th International Symposium on Computational Geometry
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Acknowledgement
Partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics” and the European Research Council (ERC), grant no. 788183, “Alpha Shape Theory Extended”. Erin Chambers: Supported in part by the National Science Foundation through grants DBI-1759807, CCF-1907612, and CCF-2106672. Mathijs Wintraecken: Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411. The Austrian science fund (FWF) M-3073 Acknowledgements We thank André Lieutier, David Letscher, Ellen Gasparovic, Kathryn Leonard, and Tao Ju for early discussions on this work. We also thank Lu Liu, Yajie Yan and Tao Ju for sharing code to generate the examples.
Volume
224
Page
66:1-66:9
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Berlin, Germany
Conference Date
2022-06-07 – 2022-06-10
ISSN
IST-REx-ID

Cite this

Chambers E, Fillmore CD, Stephenson ER, Wintraecken M. A cautionary tale: Burning the medial axis is unstable. In: Goaoc X, Kerber M, eds. 38th International Symposium on Computational Geometry. Vol 224. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2022:66:1-66:9. doi:10.4230/LIPIcs.SoCG.2022.66
Chambers, E., Fillmore, C. D., Stephenson, E. R., & Wintraecken, M. (2022). A cautionary tale: Burning the medial axis is unstable. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (Vol. 224, p. 66:1-66:9). Berlin, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2022.66
Chambers, Erin, Christopher D Fillmore, Elizabeth R Stephenson, and Mathijs Wintraecken. “A Cautionary Tale: Burning the Medial Axis Is Unstable.” In 38th International Symposium on Computational Geometry, edited by Xavier Goaoc and Michael Kerber, 224:66:1-66:9. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. https://doi.org/10.4230/LIPIcs.SoCG.2022.66.
E. Chambers, C. D. Fillmore, E. R. Stephenson, and M. Wintraecken, “A cautionary tale: Burning the medial axis is unstable,” in 38th International Symposium on Computational Geometry, Berlin, Germany, 2022, vol. 224, p. 66:1-66:9.
Chambers E, Fillmore CD, Stephenson ER, Wintraecken M. 2022. A cautionary tale: Burning the medial axis is unstable. 38th International Symposium on Computational Geometry. SoCG: Symposium on Computational GeometryLIPIcs vol. 224, 66:1-66:9.
Chambers, Erin, et al. “A Cautionary Tale: Burning the Medial Axis Is Unstable.” 38th International Symposium on Computational Geometry, edited by Xavier Goaoc and Michael Kerber, vol. 224, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, p. 66:1-66:9, doi:10.4230/LIPIcs.SoCG.2022.66.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2022-06-07
MD5 Checksum
b25ce40fade4ebc0bcaae176db4f5f1f


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar
ISBN Search