Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
6 Publications
2020 | Published | Conference Paper | IST-REx-ID: 7989 |

Patakova, Z. (2020). Bounding radon number via Betti numbers. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.61
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7990 |

Wagner, U., & Welzl, E. (2020). Connectivity of triangulation flip graphs in the plane (Part II: Bistellar flips). In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.67
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7991 |

Avvakumov, S., & Nivasch, G. (2020). Homotopic curve shortening and the affine curve-shortening flow. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.12
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7992 |

Patakova, Z., Tancer, M., & Wagner, U. (2020). Barycentric cuts through a convex body. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.62
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7994 |

Arroyo Guevara, A. M., Bensmail, J., & Bruce Richter, R. (2020). Extending drawings of graphs to arrangements of pseudolines. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.9
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 11824 |

Henzinger, M. H., Neumann, S., & Wiese, A. (2020). Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles. In 36th International Symposium on Computational Geometry (Vol. 164). Zurich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.51
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv