Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
6 Publications
2020 | Published | Conference Paper | IST-REx-ID: 7989 |

Patakova Z. Bounding radon number via Betti numbers. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.61
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7990 |

Wagner U, Welzl E. Connectivity of triangulation flip graphs in the plane (Part II: Bistellar flips). In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.67
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7991 |

Avvakumov S, Nivasch G. Homotopic curve shortening and the affine curve-shortening flow. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.12
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7992 |

Patakova Z, Tancer M, Wagner U. Barycentric cuts through a convex body. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.62
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 7994 |

Arroyo Guevara AM, Bensmail J, Bruce Richter R. Extending drawings of graphs to arrangements of pseudolines. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.9
[Published Version]
View
| Files available
| DOI
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 11824 |

Henzinger MH, Neumann S, Wiese A. Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.51
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv