Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow

Sachdeva H, Barton NH. 2017. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution; International Journal of Organic Evolution. 71(6), 1478–1493.

Download
OA 2017_Evolution_Sachdeva_supplement.pdf 625.26 KB [Submitted Version] OA 2017_Evolution_Sachdeva_article.pdf 520.11 KB

Journal Article | Published | English

Scopus indexed
Department
Abstract
Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations.
Publishing Year
Date Published
2017-06-01
Journal Title
Evolution; International Journal of Organic Evolution
Publisher
Wiley-Blackwell
Volume
71
Issue
6
Page
1478 - 1493
ISSN
IST-REx-ID
990

Cite this

Sachdeva H, Barton NH. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution; International Journal of Organic Evolution. 2017;71(6):1478-1493. doi:10.1111/evo.13252
Sachdeva, H., & Barton, N. H. (2017). Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution; International Journal of Organic Evolution. Wiley-Blackwell. https://doi.org/10.1111/evo.13252
Sachdeva, Himani, and Nicholas H Barton. “Divergence and Evolution of Assortative Mating in a Polygenic Trait Model of Speciation with Gene Flow.” Evolution; International Journal of Organic Evolution. Wiley-Blackwell, 2017. https://doi.org/10.1111/evo.13252.
H. Sachdeva and N. H. Barton, “Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow,” Evolution; International Journal of Organic Evolution, vol. 71, no. 6. Wiley-Blackwell, pp. 1478–1493, 2017.
Sachdeva H, Barton NH. 2017. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow. Evolution; International Journal of Organic Evolution. 71(6), 1478–1493.
Sachdeva, Himani, and Nicholas H. Barton. “Divergence and Evolution of Assortative Mating in a Polygenic Trait Model of Speciation with Gene Flow.” Evolution; International Journal of Organic Evolution, vol. 71, no. 6, Wiley-Blackwell, 2017, pp. 1478–93, doi:10.1111/evo.13252.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-04-17
MD5 Checksum
6d4c38cb1347fd43620d1736c6df5c79
Access Level
OA Open Access
Date Uploaded
2019-04-17
MD5 Checksum
f1d90dd8831b44baf49b4dd176f263af


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 28419447
PubMed | Europe PMC

Search this title in

Google Scholar