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Abstract6

Assortative mating is an important driver of speciation in populations with7

gene flow and is predicted to evolve under certain conditions in few-locus models.8

However, the evolution of assortment is less understood for mating based on quanti-9

tative traits, which are often characterized by high genetic variability and extensive10

linkage disequilibrium between trait loci. We explore this scenario for a two-deme11

model with migration, by considering a single polygenic trait subject to divergent12

viability selection across demes, as well as assortative mating and sexual selection13

within demes, and investigate how trait divergence is shaped by various evolution-14

ary forces. Our analysis reveals the existence of sharp thresholds of assortment15

strength, at which divergence increases dramatically. We also study the evolution16

of assortment via invasion of modifiers of mate discrimination and show that the17

evolutionarily stable assortment strength has an intermediate value under a range18

of migration-selection parameters, even in diverged populations, due to subtle ef-19

fects which depend sensitively on the extent of phenotypic variation within these20

populations. The evolutionary dynamics of the polygenic trait is studied using the21

hypergeometric and infinitesimal models. We further investigate the sensitivity of22
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our results to the assumptions of the hypergeometric model, using individual-based23

simulations.24

The extent of gene flow between diverging populations and its implications for specia-25

tion have been extensively investigated in both empirical and theoretical studies (Dobzhan-26

sky 1940; Felsenstein 1981; Neimiller et al. 1997; Servedio and Kirkpatrick 1997; Wang27

et al. 1997; Kirkpatrick 2000; Servedio 2000; van Doorn et al. 2000; Servedio and28

Noor 2003; Coyne and Orr 2004; Gavrilets 2004; Hey 2006; Bolnick and Fitzpatrick29

2007; Servedio 2011). A typical scenario involves divergence of two populations in al-30

lopatry followed by secondary contact; selection against the resultant, possibly inviable,31

hybrids can spur the reinforcement of prezygotic mating preferences, leading to complete32

reproductive isolation and the emergence of ‘good species’ (Dobzhansky 1940; Serve-33

dio and Noor 2003; Coyne and Orr 2004). Alternatively, divergence may occur in the34

face of continuous gene flow even without an initial allopatric phase, if populations face35

divergent selection due to ecological heterogeneity, competition and/or selective mating36

(Bolnick and Fitzpatrick 2007). Prezygotic isolation is in this case both a driver of initial37

divergence, and may itself be selected for or against as divergence increases.38

In this paper, we focus on the latter case of parapatric populations with ongoing migra-39

tion and ask: How do the competing forces of divergent selection and homogenizing gene40

flow shape the evolution of prezygotic isolation and resultant divergence levels between41

populations, when the traits under natural and sexual selection are highly polygenic?42

In considering this question, it is useful to distinguish between two scenarios. Rein-43

forcement may occur via the divergence of an assortment trait between populations, on44

a timescale for which the strength of assortment is assumed fixed. Here, strength of45

assortment refers to female ‘choosiness’ or the the extent to which females discriminate46

between similar and dissimilar males. Alternatively, if there is heritable variation in the47

degree of mate discrimination, as observed in several natural populations (Butlin 1993;48
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Ortiz-Barrientos and Noor 2005), then the assortment strength may itself evolve due to49

direct or indirect selection. Reinforcement, in this case, involves co-evolution of the degree50

of discrimination with the assortment traits on which it acts. These two views of rein-51

forcement are complementary—the ‘established assortment’ model is useful in surveying52

possible outcomes, while the ‘evolving assortment’ model elucidates whether outcomes53

are evolutionary attractors, i.e., if long-term evolution over a higher-dimensional trait54

space is likely to converge to them.55

Both established and evolving assortment scenarios have been studied extensively us-56

ing Adaptive Dynamics (AD) and in models with one or two (or very few) loci under57

disruptive selection (Felsenstein 1981; Kelly and Noor 1996; Servedio 2000; Matessi et58

al. 2001; Pennings et al. 2008; Ripa 2009; Servedio 2011; Rettelbach et al. 2013).59

These models are often chosen for their analytical tractability and can disentangle the60

roles of different evolutionary processes during divergence in a simple setting. However,61

many putative assortment traits, such as body size, beak length or display traits such62

as colorful plumage may be highly polygenic and differ from oligogenic traits in two key63

ways.64

First, polygenic traits harbour substantial genetic variation in spite of being under sta-65

bilizing selection (Barton and Keightley 2002) and typically exhibit a continuous range66

of phenotypes. Frequency-dependent selection acts on this continuous variation very dif-67

ferently from how it acts on few-locus traits, with divergence in the latter case sometimes68

arising only as an artefact of the small number of accessible phenotypes (Polechová and69

Barton 2005). Moreover, as we argue in this paper, even within diverged populations,70

the extent of genetic variation and the frequency of atypical, ‘outlier’ phenotypes can71

qualitatively impact whether these populations evolve complete reproductive isolation.72

A second distinctive feature of polygenic traits is that the response of their distribu-73

tion to selection is driven primarily by changes in associations or linkage disequilibria74

3



(LD) between loci (Bulmer 1980). Assortative mating, especially, generates strong LD75

(Felsenstein 1981; Barton and de Cara 2009), which inflates trait variance. For highly76

polygenic traits, this LD-driven increase in variance can be stronger and more rapid than77

loss of variation due to sexual selection (Kirkpatrick and Nuismer 2004; Bürger and78

Schneider 2006). In fact, we find that the buildup of LD across loci triggers synergistic79

changes in allele frequencies, resulting in a steep increase in divergence between the two80

populations beyond a threshold assortment strength, akin to a speciation event.81

To clarify shared features as well as key differences between assortment based on highly82

polygenic traits versus assortment based on similarity at a few loci, we consider a well-83

studied ‘magic trait’ scenario of speciation (Gavrilets 2004; Servedio et al 2011), wherein84

two initially identical populations with ongoing gene flow express a continuous trait that85

is subject to divergent viability selection across demes and is also the basis of assorta-86

tive mating by female choice, which generates sexual selection on males. We focus on87

the following questions: First, are there general conditions on the strengths of selec-88

tion, migration and assortment for which polygenic traits diverge? In particular, what89

role does assortative mating play in generating divergence? Second, when assortment90

strength can evolve through the invasion of modifiers of mate discrimination, is there91

an evolutionarily stable (ES) level of assortment? Is it sufficient to produce divergence92

and eventually complete reproductive isolation? Third, under what conditions is genetic93

variation maintained within demes, and how does the extent of variation affect modifier94

evolution?95

In considering the last question, it is important to distinguish between genetic (and96

phenotypic) variation that exists in populations before the onset of divergent selection97

(for instance due to migration or frequency-dependent or fluctuating selection in the past)98

and variation that is dynamically maintained during divergence by de novo mutation or99

gene flow between demes. Here, we take the initial phenotypic variance as a parameter,100

but assume that it is not so low as to inhibit a response to selection. In principle,101
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initial variation may be depleted by stabilizing selection within each deme, but for highly102

polygenic traits, this occurs more slowly than the changes in trait mean involved in103

divergence. Further, even for traits determined by a moderate number of loci, variation104

may be replenished by the influx of genetically dissimilar individuals. In order to clarify105

when stable variation is maintained simply by gene flow, we mostly study the model with106

no mutation. The effects of mutation are discussed in Appendix S6.107

It is also useful to contextualize the model within the main themes emerging from108

other theoretical models of prezygotic isolation and divergence (Kirkpatrick and Ravigné109

2002). A crucial determinant of prezygotic isolation is whether the isolating mechanism110

has a one-allele or two-allele basis (Felsenstein 1981). One-allele mechanisms, e.g., those111

involving the spread of modifiers that increase habitat preference or mate discrimination,112

are not hindered by migration or recombination, as they require substitution of the same113

allele in both populations. By contrast, two-allele mechanisms, e.g., those involving114

divergence of sexual display or assortment traits, require different alleles to be maintained115

in incipient species (possibly at multiple loci), and are unlikely to evolve with high gene116

flow. However, many plausible scenarios of reinforcement have both one and two-allele117

components (Kirkpatrick and Ravigné 2002; Servedio and Noor 2003). For instance,118

in our model, while isolation increases through substitution of modifiers that increase119

mate discrimination (one-allele mechanism), it also requires the emergence of distinct120

phenotypes in each deme (which has a two-allele basis, in that different alleles must be121

maintained in the two populations at several trait loci). Moreover, migration influences122

these two components in opposite directions, with high migration promoting hybridization123

and making it harder for distinct phenotypes to emerge, while also increasing the tendency124

of populations to evolve stronger discrimination that reduces hybridization. We explore125

the dual role of migration in assortment evolution subsequently.126

While populations can split purely due to strong assortment under certain special127

conditions (Kondrashov and Shpak 1998), divergence is greatly facilitated if the as-128
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sortment trait is a ‘magic trait’ under direct disruptive selection (Servedio et al 2011),129

which leads to a strong coupling between postzygotic and prezygotic isolation. Here,130

we consider a magic assortment trait subject to both viability and sexual selection, and131

demonstrate how these two components of direct selection can drive mate discrimina-132

tion antagonistically—an effect also observed in few-locus models (Kelly and Noor 1996;133

Matessi et al. 2001; Kirkpatrick and Nuismer 2004)134

Even with direct selection on the assortment trait, selection on modifiers of assortment135

may be indirect, e.g., when it is due to linkage disequilibrium between the modifier locus136

and assortment trait loci. Direct selection on modifiers arises if choice is ‘costly’, for137

instance, if more discriminating females suffer reduced mating opportunities. Such costs,138

unless very minor, inhibit the evolution of mate discrimination (Kopp and Hermisson139

2008; Otto et al. 2008) and are excluded from the model.140

The model141

Our model assumes two demes, in which haploid organisms undergo viability selec-142

tion towards distinct optima in each deme, followed by migration between demes, and143

finally assortative mating within each deme, driven by female preference for phenotypi-144

cally similar males. We consider a scenario especially favourable to speciation, namely,145

where the phenotype X, expressed in both sexes, simultaneously affects viability and146

assortment. The phenotypic distributions in the two demes are assumed to be initially147

identical and Gaussian (with mean X0 and variance V0), but evolve differently over time148

due to divergent selection.149

Generations are assumed to be discrete and non-overlapping. In each generation, pop-150

ulations first undergo stabilizing selection with fitness Wi(X)=exp (−(X − µi)2/2Vsi) for151

deme i. Density is regulated independently in each deme (‘soft selection’). Selection is152

strongly divergent across the two demes when the difference between the optima µ1 and153
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µ2 is large, and the strength of stabilizing selection (∼1/Vs1 , 1/Vs2) high. Selection is154

followed by migration, where a fraction mij of the population of deme i is replaced by155

migrants from deme j.156

After migration, each population mates assortatively, followed by free recombination.157

Assortment is based on female choice, with females preferentially mating with males158

within a phenotypic range α. We consider a Gaussian preference function: the probability159

of mating, given an encounter between a female with phenotype Y and a male with160

phenotype Z is proportional to exp[−(Y − Z)2/2α2], where α is the preference range of161

the female, and 1/α2 represents the degree of mate discrimination. If all females have162

the same preference range, then 1/α2 also represents the strength of assortative mating163

in the population. Each female, irrespective of phenotype, has the same probability of164

mating, but males with common phenotypes have a mating advantage, resulting in sexual165

selection on males. Population census is carried out after mating and recombination to166

obtain the distribution P (X) of phenotypes.167

The preference range α is determined by a single unlinked locus which is present in168

both sexes, and can be inherited from either parent. However, strength of preference169

is expressed only by females. In the established assortment case, a single allele with170

preference range α is fixed at this locus, while in the evolving assortment scenario, alleles171

with preference ranges α1, α2, . . . segregate.172

The magic trait X is determined additively by L autosomal, haploid, unlinked, diallelic173

loci. Allelic effects at each locus are assumed to be identical, and chosen to ensure that174

the typical segregation variance, i.e., the phenotypic variance of offspring of parents near175

the center of the phenotypic range is 1 in the large L limit (Appendix S1); then, the176

phenotypic range extends from −
√

2L to
√

2L. Further, all phenotypic ‘distances’ such177

as µ,
√
Vs,
√
V0 and α are specified in units of this segregation variance, which can be178

easily measured in populations.179
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We study the evolutionary dynamics of the trait X using the hypergeometric model180

(HM) which assumes that all genotypes corresponding to any phenotype are represented181

equally in the population (‘symmetry assumption’, details in Appendix S1), resulting in182

all trait loci being polymorphic with allele frequencies equal to 1/2 for X=0 (Kondrashov183

1984; Barton 1992; Doebeli 1996). In the large L limit, our results are also recovered184

from the infinitesimal model (Bulmer 1980), which makes the less restrictive assumption185

of a constant, non-zero segregation variance (which nevertheless requires high genetic186

polymorphism). The infinitesimal model encompasses a wider class of genetic architec-187

tures and also describes traits determined by many loci of unequal effects with weak,188

random epistasis (Barton et al. 2016).189

A limitation of this approach is that small deviations from the symmetry assumption190

can be amplified by stabilizing selection, resulting in much less genetic variation than191

predicted by the HM (Barton and Shpak 2000). To test the stability of HM predictions,192

we perform individual-based simulations of finite populations, for which deviations from193

symmetry assumptions arise simply due to drift. To suppress other confounding effects of194

genetic drift (for instance, in small populations, where it may swamp weak, indirect selec-195

tion on modifiers), we simulate very large populations (N∼106), for which changes due to196

the intrinsic instability of the HM are expected to dominate over stochastic fluctuations197

due to drift.198

Individual-based simulations are initialized by assigning to each individual in the two199

demes a phenotype X drawn from a Gaussian distribution with mean X0 and variance200

V0, and a uniformly distributed genotype corresponding to this phenotype. Selection is201

implemented by drawingN individuals in each deme (with replacement) from the previous202

generation with probability proportional to their fitness. Subsequently, a fraction m12203

of individuals in deme 1 is replaced by randomly chosen individuals from deme 2 and204

vice versa. Assortative mating is implemented by choosing a female at random, and then205

iteratively drawing males (allowing for mating with probability equal to the Gaussian206
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preference function) until mating is successful. The offspring genotype has loci drawn207

with equal probability from either parent. This procedure is repeated until N offspring208

are created. Simulations are run for 2-5× 104 generations to test for deviations from the209

HM, which emerge slowly.210

Most of our analysis deals with a highly symmetric scenario with reciprocal migration211

between demes (m12=m21=m), and equally strong selection (Vs1=Vs2=Vs) on the two212

populations towards optima with µ1=−µ2=µ, which are symmetric about X=0. We213

explore both the established and evolving assortment scenarios for the symmetric model214

in detail, and then briefly comment on versions with asymmetric gene flow (see Appendix215

S7).216

Established assortment217

With established assortment, every female has the same preference range α. Starting218

with identical Gaussian phenotypic distributions with mean X0=0 and low initial variance219

(
√
V0�µ), the two populations evolve under divergent selection, migration and assortative220

mating (see Appendix S1), until a long-term steady state is reached (see Appendix S2221

for a discussion of alternative initial conditions). We first characterize how divergence222

between populations in this long-term state depends on various evolutionary parameters223

under HM assumptions.224

In general, strongly divergent selection (low Vs, high µ) facilitates local adaptation225

while strong migration (high m) tends to create homogenized, generalist populations.226

In an intermediate selection regime, where these two opposing forces are comparable in227

magnitude, assortment plays a crucial role. An increase in assortment strength, i.e., a228

decrease in α, has two somewhat contrary effects—first, it reduces the mating success of229

rare, outlier males by creating positive frequency-dependent sexual selection (especially230

at intermediate α); second, it leads to a stronger correlation between male and female231

9



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-15 -10 -5 0 5 10 15Si
ng

le
-D

em
e

Ph
en

ot
yp

ic
D

is
tr

ib
ut

io
n
P
(X

)

Phenotype value X

µ=7.5
√
Vs/µ=0.8 m=0.2

√
V0/µ=0.133 L=100

α/2µ=0.2667
α/2µ=0.2547
α/2µ=0.2533

a

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4
Relative width of preference function (α/2µ)

µ=7.5
√
Vs/µ=0.8 m=0.2

√
V0/µ=0.133 L=100

Divergence level [X2−X1]/2µ

within-deme variance V/µ2

Variance due to LD (V−VLE)/µ2

Hybridisation rate H

b

0.5

0.54

0.58

0.62

0.66

0.7

0 300 600 900 1200 1500

al
le

le
fr

eq
ue

nc
y

time t (in generations)

µ=7.5
√
Vs/µ=0.8 m=0.2

√
V0/µ=0.133 α/2µ=0.2533

L=100 N=106

c

Figure 1: (a) Long-term phenotypic distributions P (X) vs. X for a single deme with
optimum at +µ, for various values of α (HM predictions). The unimodal distribution
becomes broader as α decreases and switches to a bimodal distribution at a threshold
preference range αc/2µ, here approximately 0.254. The bimodal distribution has clearly
differentiated peaks at +µ and −µ corresponding respectively to diverged resident and
migrant phenotypes, and may also have a small number of hybrids at X=0 (not visible
on this plot), depending on the value of αc. (b) Various statistics of the population (as
predicted by the HM) vs. relative width (α/2µ) of preference function. Statistics include
(i) trait divergence measured as the relative difference between the trait means (X1 and
X2) of the two demes (ii) variance of the phenotypic distribution in a deme (iii) variance
due to LD (iv) hybridization rate. All statistics exhibit a sharp change at α=αc. (c)
Allele frequency vs. time for randomly chosen loci in individual-based simulations for a
population near the divergence threshold (α∼αc). Allele frequencies increase synergis-
tically over a short period of time, resulting in a sharp increase in divergence and the
emergence of bimodal P (X).
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phenotypes within each mating pair—thus when outlier males do mate, they mate pri-232

marily with outlier females and produce outlier offspring. This increased correlation233

builds up LD between loci, increasing the variance of the unimodal trait distribution as234

well as its skew towards the optimum (fig. 1a), in spite of sexual selection against outlier235

phenotypes. This, in turn, leads to a stronger response to natural selection; in fact at a236

critical preference range αc, the LD becomes high enough for selection to drive synergistic237

changes in allele frequencies across all loci (fig. 1c), causing the mean phenotype to shift238

towards the selection optimum of the deme. Thus populations with α<αc have clearly239

distinguishable resident and migrant phenotypes in each deme (represented by the two240

peaks of the bimodal distribution in fig. 1a), along with a small fraction of hybrids.241

The qualitative change in the phenotypic distribution at α=αc manifests itself as a242

sharp increase in the divergence, defined as the difference between mean trait values in243

the two demes, as well as in the trait variance within each deme (fig. 1b, also fig. 2a). The244

divergence in figs. 1b and 2a is scaled by 2µ, which is the maximum divergence possible245

(with zero migration), while the variance is scaled by µ2. The increase in variance at αc246

is due to an increase in the disequilibrium component of the variance (see fig. 1b), which247

is just the pairwise LD summed over all pairs of loci. Elevated genome-wide LD and248

variance simply reflect the coexistence of diverged residents and migrants within each249

deme. Note also the corresponding drop in the rate of hybridization H at αc, where H250

is defined as the fraction of individuals in a deme produced by resident-migrant pairings251

in each generation (H=2m(1−m) in a randomly mating population).252

In the following, we refer to populations with bimodal phenotypic distributions within253

demes (having α<αc) as diverged, and populations with unimodal distributions (α>αc) as254

hybridized (even though trait means may differ slightly in the latter state). Some degree255

of gene flow can persist between diverged populations, as evinced by the small number256

of hybrids in populations with α<αc. Thus divergence, as defined here, represents an257

important step in the speciation process, but does not necessarily complete reproductive258
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isolation. We refer to αc, the preference range at which phenotypic distributions become259

bimodal, as the preference threshold for divergence, and typically specify it as the ratio260

αc/2µ, thus indicating how narrow preferences must be relative to the phenotypic distance261

between selection optima, for divergence to occur. Alternatively, we can specify the262

threshold assortment strength (αc/2µ)−2.263

Note that αc decreases as selection becomes weaker or migration stronger (fig. 2c),264

pointing towards the high levels of assortment required for divergence under these condi-265

tions. We also develop a Gaussian approximation for the infinitesimal model (Appendix266

S4) and find that this predicts the divergence threshold very well, especially for moderate267

selection (fig. 2c).268

In addition to selection and migration parameters, αc also depends on the initial phe-269

notypic variance V0 of the populations (fig. 2d). With no selection or assortment, V0270

rapidly equilibrates to twice the segregation variance, but diversifying selection, assor-271

tative mating and/or a history of secondary contact can cause it to differ significantly272

from this value; we thus treat V0 as a parameter which encapsulates population history.273

First consider populations with mean phenotype X∼0 and
√
V0/µ�1. Such populations274

are unlikely to include the optimal phenotype at t=0, and divergence, if it occurs, is275

preceded by a gradual buildup of variance via strong assortative mating. On the other276

hand, for
√
V0/µ�1, optimal phenotypes are present in the populations at the outset,277

irrespective of assortment level (as would be natural for populations that have just come278

into secondary contact after an allopatric phase). This results in an initial divergence,279

which is eroded subsequently due to continued migration and hybridization if assorta-280

tive mating is weak. Crucially, stronger assortment is required to create divergence in281

unimodal populations than to prevent hybridization among diverged populations, as also282

noted in Kondrashov and Shpak (1998). Thus for assortment strengths which lie within283

the rising part of the αc vs.
√
V0/µ curve (fig. 2d), divergence is possible if V0 is high284

and optimal phenotypes already present (i.e., for V0 to the right of the αc vs.
√
V0/µ285
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Figure 2: (a) Divergence measured as the difference between the trait means of the two
demes vs. relative width (α/2µ) of preference function, for various Vs. Lines represent
HM predictions and points are from individual-based simulations with N=105. For inter-
mediate selection (

√
Vs/µ=0.8, 1.2), trait divergence undergoes a sharp drop at a thresh-

old αc, signifying a switch from a bimodal to a unimodal P (X). For strong selection
(
√
Vs/µ=0.4) and weak selection (

√
Vs/µ=2.5), no sharp transitions occur and popula-

tions remain diverged and hybridized respectively at all values of α. HM correctly predicts
the qualitative state (diverged vs. hybridized) and αc in individual-based simulations, but
not the exact divergence levels. (b) Selection-migration parameters corresponding to the
three selection regimes (HM predictions): Populations are always bimodal (or trimodal)
for strong selection (for Vs below the V SS

s threshold) and always unimodal for weak selec-
tion (for Vs>V

WS
s ), irrespective of α. For V SS

s <Vs<V
WS
s , phenotypic distributions shift

from unimodal to bimodal at α=αc. (c) Preference threshold αc/2µ vs. migration rate
m: Predictions for αc from a Gaussian approximation of the infinitesimal model (lines)
are in good agreement with HM predictions (points). (d) Preference threshold αc/2µ vs.
the initial phenotypic variance V0 of populations (HM predictions): Stronger assortment
is required for divergence (lower αc) when initial variance is low.
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curve), but cannot be induced in low-V0 populations (V0 to the left of the curve), leading286

to a bistability, wherein the initial variance determines whether divergence is possible in287

the long run (see also Appendix S4). This bistability has important consequences for288

modifier evolution, as discussed later.289

In contrast to the intermediate selection regime, divergence levels change very little290

with assortment strength when selection is much stronger or weaker than migration (fig.291

2a). In the strong selection regime, i.e., for Vs smaller than the threshold V SS
s in fig.292

2b, the distribution in each deme is bimodal (or trimodal if m is large and hybrids293

numerous enough), and divergence correspondingly high even with random mating (α→294

∞). At the other extreme, in the weak selection regime, i.e., for Vs larger than the weak295

selection threshold V WS
s in fig. 2b, populations remain hybridized and exhibit a unimodal296

distribution even for maximum assortment (α→0).297

The existence of a weak selection threshold V WS
s is explained by considering the lifetime298

fitness of different phenotypes in the α→0 limit. Neglecting the effect of segregation299

(due to mating between genotypically distinct but phenotypically identical individuals),300

the relative change in frequency of phenotype X in deme 1 in one generation is ∼(1 −301

m)W1(X)/W1 + mW2(X)/W2, where W1 and W2 denote the mean fitness in the two302

demes. For m=0.5 and W1∼W2 (as expected for a hybridized population), this relative303

change is maximum for the generalist phenotype X=0 when selection is weak (
√
Vs>µ),304

but is (locally) minimum at X=0 and maximum near the optima ±µ for stronger selection305

(
√
Vs<µ). Thus, weak stabilizing selection within demes effectively generates stabilizing306

selection on the whole population around the generalist phenotype. The threshold V WS
s307

for m<0.5 can be derived similarly, see also van Doorn et al. (2000). Even in the weak308

selection regime, the HM does predict a modest assortment-driven increase in divergence309

(
√
Vs/µ=2.5 curve in fig. 2a) due to a shift of the distributions towards extreme or edge310

phenotypes. However, finite populations cannot sustain these shifts and congeal into a311

few genotypes near X=0, ultimately resulting in zero divergence (illustrated in detail in312
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Figure 3: Long-term phenotypic distribution P (X) of the whole population comprising
both demes from individual-based simulations (for N=105) vs. HM predictions, t=50000
generations after onset of divergent selection. (a) HM accurately predicts P (X) for
diverged populations in individual-based simulations if there is significant hybridization
between them (close match between squares and the solid line for trimodal distribution
with numerous hybrids), but not if hybridization is low (triangles vs. dashed line). (b)
HM predictions are accurate for hybridized populations when they are subject to strong
divergent selection (squares), but not if selection on populations is weak (triangles vs.
dashed line). The HM predicts the bimodal/trimodal (fig. 2(a)) or unimodal (fig. 2(b))
character of the phenotypic distributions accurately.

Appendix S5 for very weak selection).313

Thus, a scan across parameter space reveals three qualitatively different scenarios: the314

strong selection scenario with purely ecological divergence, the intermediate selection315

scenario with assortment-dependent divergence and the weak selection scenario with no316

divergence. Figure 2b depicts typical (Vs,m) combinations corresponding to the three317

scenarios, by plotting the strong selection V SS
s and weak selection V WS

s thresholds against318

migration rate m.319

Stability of hypergeometric model (HM) predictions. While the HM correctly320

predicts the qualitative state (diverged vs. hybridized) of finite populations, it may not321

always predict the exact divergence level (fig. 2a). This discrepancy, when it appears,322

is due to the fact that the high genetic polymorphism, implicit in the HM, is disfavored323

by stabilizing selection (Barton and Shpak 2000). With migration, however, each deme324
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can also replenish genetic variation by mating between phenotypically distinct residents325

and migrants, raising the possibility that the HM is more robust in a two-deme than in326

a one-deme scenario.327

To test this, we compare the long-term phenotypic distributions P (X) of large pop-328

ulations (N=105 - 106) from individual-based simulations with the corresponding HM329

predictions (fig. 3). This reveals certain general trends. First, the HM correctly pre-330

dicts P (X) for finite, initially polymorphic populations, whether diverged (bimodal) or331

hybridized (unimodal) over short timescales (results not shown). Second, for diverged332

populations, long-term stability of the HM prediction for P (X) depends on the extent333

of gene flow: populations with minimal gene flow between migrant and resident pheno-334

types (as indicated by rare hybrids) eventually lose phenotypic variation around the two335

optima due to stabilizing selection, while diverged populations with significant hybridiza-336

tion maintain variation and have distributions that are accurately predicted by the HM337

(fig. 3a). Thus in the diverged state, strong assortment (low α), reduced migration (low338

m) or strong selection (low Vs) tend to destabilize the HM prediction.339

Finally, for hybridized populations, the unimodal distribution P (X) agrees with the340

HM for intermediate selection, but collapses into a single-phenotype distribution if Vs341

is large (fig. 3b). As discussed above, this is due to the fact that weak stabilizing342

selection within demes generates net stabilizing selection about X∼0. In fact, an increase343

in assortment in the weak-selection regime can actually destabilize P (X) by depleting344

polymorphic loci, an effect which precludes the buildup of LD with assortment. Loss of345

variation in the weak selection limit is also observed in single diploid-locus and oligogenic346

models (van Doorn et al. 2000; Kirkpatrick and Nuismer 2004; Bürger and Schneider347

2006; Pennings et al. 2008; Rettelbach et al. 2013).348

The instabilities discussed above merely cause loss of variation around the peak(s)349

of the phenotypic distributions, while typically maintaining their bimodal or unimodal350
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character (fig. 3, see Appendix S5 for some exceptions). Thus, the HM accurately predicts351

the qualitative state of populations, as well as the threshold αc for divergence (fig. 2a),352

as long as populations have a sufficient number of polymorphic loci in the initial state.353

Evolving assortment354

We now consider the evolving assortment scenario, where a modifier (associated with355

preference range αmod) is segregating at a small frequency p0 in an ancestral popula-356

tion (preference range αanc). Our goal is to understand how modifier frequency changes357

in response to selective forces, identify conditions for invasion of assortment modifiers,358

and use this to determine the evolutionarily stable (ES) assortment strength for various359

migration-selection scenarios.360

To study modifier evolution, we make two simplifying assumptions: that there is361

no initial asymmetry between demes (modifier frequency in each deme is p0 at t=0),362

and that there is no initial disequilibrium between the modifier locus and the trait loci363

(P (X,αmod)=p0P (X) at t=0). We first examine HM predictions in detail, and then364

compare these with individual-based simulations.365

Assortment ESS and its dependence on the evolutionary history of the ances-366

tral population. Consider an ancestral population with selection-migration param-367

eters (µ=7.5,
√
Vs=0.8µ, m=0.2) for which divergence occurs at a threshold αc that368

depends on V0, the initial phenotypic variance of the population (before it equilibrated369

at αanc). For various values of αanc, this population may equilibrate to qualitatively dif-370

ferent (unimodal vs. bimodal) states depending on V0 (see fig. 2d). Thus the fate of371

an assortment modifier introduced in this population depends not only on the preference372

ranges (αanc and αmod) of the ancestral and modifier alleles, but also on the evolution-373

ary history of the ancestral population. To explore this dependence, we contrast how374

modifiers evolve in ancestral populations with a history of low variance (
√
V0/µ�1) with375
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Figure 4: (a)-(b) Pairwise invasibility plots (as predicted by HM) for modifier with pref-
erence range αmod introduced in an ancestral population in a long-term stationary state
at some preference range αanc, where the long-term state depends on the initial (pre-
equilibration) variance V0 of the ancestral population. PIPs are shown for the case where
V0 is (a) low (

√
V0�µ) and (b) high (

√
V0>µ). A modifier may invade and go to fixation

(filled region of both PIPs) or invade but remain in a polymorphic equilibrium with the
ancestral allele (diagonally shaded regions), or transiently invade an ancestral population
with (historically) low V0, induce divergence, and then decline in frequency due to neg-
ative selection on the modifier in the diverged state (chequer shaded region in fig. 4a).
The unusual topology of the PIP in fig. 4a is due to the fact that diverged populations
(αanc<αc) can be invaded by any modifier with αmod sufficient to maintain divergence.
(c) Modifier frequency as a function of time t for four different parameter combinations
(αanc, αmod) corresponding to the four scenarios: invasion and fixation, invasion and sta-
ble polymorphism at the preference locus, transient invasion and subsequent decline of
modifier, and no invasion of modifier (HM predictions).
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modifier evolution in ancestral populations which had high initial variance (
√
V0/µ>1),376

by plotting pairwise invasibility plots (PIPs) for (αanc, αmod) combinations in both cases377

(figs. 4a and 4b). Since the PIPs assume a specific evolutionary history of the ancestral378

population, they only illustrate the outcome of a single mutation event and cannot be379

used to infer the outcome of a sequence of mutations at the modifier locus.380

Consider first the PIP for the ancestral population with high V0 before equilibration381

(fig. 4b). This plot reveals the existence of an intermediate evolutionarily stable (ES)382

preference range α∗, somewhat lower than αc. Ancestral populations with αanc>αc are383

invaded by modifiers that reduce the preference range (filled region to the right of α∗ in384

fig. 4b), thus driving populations towards the divergence threshold. However, diverged385

ancestral populations with αanc�αc, are invaded by modifiers that increase α (filled386

region to the left of α∗) and introduce some hybridization between resident and migrant387

phenotypes in each deme. Positive selection on such modifiers is due to their preferential388

association with relatively fit hybrids at the expense of highly unfit migrant phenotypes389

(details below).390

The PIP also reveals various combinations of very high assortment and very low assort-391

ment alleles which form protected polymorphisms (diagonally shaded region in fig. 4b; the392

phase boundary of this region can be also derived from a simple geometric construction,393

see Geritz et al. (1998)). High-assortment alleles (αmod�α∗) have a fitness advantage394

in weakly assortative, unimodal populations (αanc�α∗), as they tend to associate with395

phenotypic outliers close to the selection optimum. This causes the high-assortment allele396

to invade and the populations to diverge. In the bimodal state, low-assortment alleles as-397

sociate with more hybrids and fewer phenotypes near the migrant optimum, giving them398

a selective advantage, which persists as long as they are too rare to collapse divergence.399

Thus both high and low assortment alleles have a fitness advantage at low frequencies,400

resulting in a polymorphic equilibrium between them, which allows populations to remain401

diverged while maintaining significant hybridization. Such polymorphisms are, however,402
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ultimately unstable– alleles with α value intermediate to these may either supplant both403

of the original alleles or form a new dimorphism with the low-assortment or the high-404

assortment allele, eventually bringing the population close to α∗ (Geritz et al. 1998).405

We next examine the PIP (fig. 4a) for an ancestral population with a history of low vari-406

ance V0 (before equilibration) and a correspondingly stringent divergence threshold (low407

αc). Consider a situation with αanc slightly higher than αc, for which the ancestral pop-408

ulations are hybridized, but could have diverged had the initial variance been sufficiently409

high. As before, small-effect modifiers that reduce preference range (αc<αmod<αanc),410

successfully invade and fix. However, when modifiers that reduce α below the divergence411

threshold (αmod≤αc<αanc) are introduced, very different dynamics ensue—the modifier412

initially shows a sharp increase in frequency, causing the populations to diverge, but once413

divergence sets in, there is a resurgence of the ancestral allele which pushes modifier414

frequency back to zero (solid curve in fig. 4c), with diverged sub-populations now being415

maintained at αanc itself.416

This sort of ‘resident strikes back’ dynamics also emerges in other evolutionary models417

with multiple attractor states (Mylius and Diekmann 2001), and in the present model,418

occurs when the ancestral population has intermediate αanc (chequer-shaded region of419

PIP in fig. 4a) for which divergence levels show a bistable dependence on V0 (the initial420

variance of the population before equilibration). The invading high-assortment modifier421

merely increases population variance, causing the bistable system to switch to the alter-422

native (bimodal) state in which the ancestral allele has an advantage due to its tendency423

to associate with relatively fit hybrids (fig. 5c). The range of αanc allowing for the tran-424

sient invasion of high-assortment modifiers shrinks with increasing V0, and vanishes (fig.425

4b) when V0 is so high that there is no distinction between the assortment level required426

to induce or maintain divergence in the ancestral population.427
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Figure 4c illustrates the variety of dynamical behaviours that can occur when assort-428

ment modifiers invade an ancestral population with weak assortment (αanc>αc) and low429

V0 (before equilibration). Modifiers that further widen preference range are eliminated,430

while modifiers that reduce α typically invade the population in the short run, but suffer a431

long-term fate that depends sensitively on the values of αanc and αmod. Thus, αmod<αanc432

modifiers either fix (corresponding to the filled region in fig. 4a), or decline towards zero433

frequency (typically after invading transiently and inducing divergence, chequer-shaded434

region in fig. 4a) or form a dimorphism with the ancestral allele (diagonally shaded435

region).436

Assortment ESS under different migration-selection scenarios. Having ana-437

lyzed modifier evolution in detail for one set of parameters, we now ask: how does the438

ES assortment level vary with migration and selection strengths, and is it always high439

enough to induce divergence, while simultaneously being too low to complete reproduc-440

tive isolation between diverged sub-populations (as in fig. 4b and accompanying text)?441

442

Figure 5a shows how the scaled ES assortment strength, given by (α∗/2µ)−2, and the443

divergence threshold, (αc/2µ)−2, vary with 2µ, the phenotypic distance between the se-444

lection optima, for two different migration rates. As selection across demes becomes445

more divergent (2µ increases), the ES assortment level changes in a rather complex way,446

revealing four qualitatively different regimes of assortment evolution. For small µ, ran-447

dom mating is the ESS, with (α∗/2µ)−2∼0. For intermediate µ, the population evolves448

non-zero assortment, which is still lower than the threshold for divergence (dashed line),449

so that the populations are hybridized at the ESS. For larger µ, i.e., in the falling part450

of the (α∗/2µ)−2 vs. 2µ plot in fig. 5a, assortment evolves exactly to the level required451

to induce divergence but no further, while for very large µ, the ES assortment strength452

is much higher than the divergence threshold (αc/2µ)−2, which is not even well-defined453

when µ is very large and divergence is driven primarily by ecological selection.454
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Figure 5: (a) The scaled ES assortment strength (α∗/2µ)−2 and scaled threshold assort-
ment strength for divergence, (αc/2µ)−2, vs. 2µ, the difference between the selection
optima, for two values of m. (b) Coefficients of viability, sexual and net selection on a
modifier that reduces preference range (αmod=0.98αanc) vs. assortment level (αanc/2µ)−2

within the ancestral population, for µ=8 (main plot) and µ=6 (inset). Selection coeffi-
cients are measured 2000 generations after introduction of modifier at initial frequency
p0=0.1. Net selection on modifier changes sign at α=α∗. For µ=6 (inset), negative sexual
selection on modifiers prevents assortment strength from evolving beyond the ES level,
while for µ=8, negative viability selection prevents a further increase.
(c)-(d) Marginal phenotypic distributions Pα(X)=P (X,α)/

∑
X

P (X,α) associated with

an intermediate-assortment (α∼α∗) and a high-assortment (α∼0.5α∗) allele segregating
at the modifier locus in one of the demes (with optimum at +µ), 100 generations after the
high-assortment modifier is introduced at frequency 0.1 in the ancestral population close
to its ESS. Lower marginal fitness of the high-assortment modifier in a bimodal popula-
tion may be due to the lower frequency of relatively fit hybrids and higher frequency of
unfit migrant phenotypes in the associated phenotypic distribution (fig. 5(c)), or due to
the higher frequency of outliers in the resident and migrant sub-distributions associated
with the modifier (fig. 5(d)). All plots show HM predictions.
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To understand why assortment strength cannot evolve to a level sufficient for divergence455

when µ is small, while evolving up to or beyond the divergence threshold for larger456

µ, consider how assortment modifiers fare in hybridized (unimodal) populations. In457

such populations, modifiers that reduce α tend to associate with outlier or ‘extreme’458

phenotypes— this generates indirect selection on the modifier, if outliers either have high459

viability (are close to the selection optimum) or low mating success (have phenotypes460

far from those of most individuals). We distinguish between these two possibilities by461

separately tracking the viability and sexual selection/mating success components of the462

net (indirect) selection acting on the modifier (see Appendix S1). Note that for the463

symmetric model, indirect selection is the sole driver of modifier evolution (neglecting464

drift).465

For small µ (corresponding to the weak selection regime in fig. 2b), outliers are not466

favoured by viability selection since they are less fit than the generalist (X∼0) phenotype.467

Moreover, outliers are also chosen for mating with a probability less than their frequency,468

as they are farther from the majority. Thus, in this regime both viability and sexual469

selection disfavour modifiers that increase assortment, resulting in (α∗/2µ)−2∼0 at the470

ESS.471

For intermediate or large µ (corresponding to the assortment-dependent divergence472

regime in fig. 2b), outlier phenotypes associated with the modifier are fitter than phe-473

notypes near X∼0, resulting in positive viability selection on the modifier. However, as474

long as the population is unimodal, the modifier still undergoes negative sexual selection475

due to the reduced mating success of outliers. Thus, natural and sexual selection drive476

modifier evolution in opposite directions, and the ensuing ES assortment level depends477

on the relative strength of the two, which depends on selection and migration parameters.478

To clarify this, we explicitly track, for two different selection parameters, how the coef-479

ficients of viability and sexual selection on a modifier of small effect (αmod=(1 − δ)αanc,480

δ=0.02) vary with the assortment level, (αanc/2µ)−2, in the ancestral populations (fig.481
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5b).482

For intermediate µ, outliers enjoy a rather modest fitness advantage over hybrids. Thus,483

a modifier that increases discrimination in a randomly mating population experiences484

weak viability selection, which is just slightly higher than the sexual selection acting485

against it (inset, fig. 5b). In fact, as assortment builds up, i.e., with increasing 1/α2
anc,486

sexual selection against modifiers (that reduce α) becomes stronger than positive viability487

selection, inhibiting a further increase in assortment towards the divergence threshold488

(inset, fig. 5b). For larger µ, phenotypes close to the deme optimum are much fitter than489

hybrids clustered around X=0 (strong selection for specialists over generalists). Thus,490

viability selection on modifiers that lower α is much stronger, and prevails over negative491

sexual selection (main plot, fig. 5b), driving assortment to a level sufficient for divergence.492

Within diverged populations, assortment evolution is governed by somewhat different493

effects. Close to αc, when populations have just become bimodal, it is possible for highly494

unfit phenotypes that migrate into the deme to produce relatively fit hybrid offspring495

by mating disassortatively, i.e., with well-adapted residents. By contrast, modifiers with496

stronger assortment (αmod<αc) allow for almost no hybridization between phenotypes497

at the two optima and are hence associated with fewer hybrids and a higher fraction of498

phenotypes near the immigrant optimum (fig. 5c). While this may give rise to a weak499

sexual selection advantage for such modifiers (since migrant phenotypes have a mating500

advantage with respect to hybrids in bimodal populations, being more numerous), it also501

results in lower marginal fitness of the α<αc modifier. Thus high-assortment modifiers502

undergo negative viability selection within bimodal populations (main plot, fig. 5b),503

which prevents any further increase in assortment beyond the divergence threshold, at504

least when µ is not extremely large (falling part of the curve in fig. 5a).505

As µ increases further, the divergence threshold (αc/2µ)−2 decreases, resulting in a fall506

in the ES assortment strength, (α∗/2µ)−2, with µ (fig. 5a). For very large µ, populations507
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approach the strong selection regime in fig. 2b, where divergence is driven more by508

ecological selection than assortment, and is thus accompanied by extensive hybridization509

between resident and migrant phenotypes (note, for instance, the trimodal distribution510

in fig. 3a). The high rate of hybridization pulls the means of the distributions around the511

two optima closer to X=0, resulting in somewhat reduced local adaptation. Modifiers512

that further increase assortment in such a population do associate more strongly with513

unfit migrant phenotypes than with fitter hybrids, but they also tend to form associations514

with better adapted (closer to optimal) phenotypes within the resident pool. Due to515

these two opposing effects, such modifiers may actually undergo positive or very weakly516

negative viability selection, causing assortment strength to evolve beyond the very low517

level required to split the unimodal population (very large µ regime in fig. 5a).518

Figure 5a also illustrates how migration influences the ES assortment strength. An519

increase in m shifts the (α∗/2µ)−2 vs. 2µ curve towards larger µ, while also increasing520

the ES assortment level attained at large µ. This is explained by noting that the range of µ521

for which populations exist in the weak selection regime and consequently have random522

mating ESS, is larger for m=0.4 than for m=0.2 (fig. 2b). Even when assortment-523

dependent divergence becomes possible, high-assortment modifiers are less effective in524

generating increased phenotypic variance and skew towards the selection optimum in525

populations with high m, because of the homogenizing effects of gene flow. Thus, weak526

viability selection on modifiers is easily canceled out by negative sexual selection even527

for fairly large µ, resulting in ES assortment levels that are insufficient for divergence.528

Only when µ is quite large does the indirect fitness advantage of such modifiers become529

strong enough to drive assortment to the threshold for divergence. Interestingly, for530

high m, this assortment threshold can be so high as to produce complete reproductive531

isolation (zero hybridization) between populations at the onset of divergence itself, in532

contrast to the moderate hybridization observed at the ESS for lower migration rates.533

A modifier that further increases assortment does not significantly reduce the (already534
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negligible) hybrid frequency. Instead, it tends to associate with outliers within resident535

and migrant sub-populations in each deme (see fig. 5d). These outliers, especially within536

the resident sub-population, are both less fit and less likely to be selected for mating than537

phenotypes at the selection optimum, resulting in negative viability and sexual selection538

against modifiers that increase assortment strength beyond the divergence threshold.539

Assortment evolution in individual-based simulations. The preceding discussion540

highlights the sensitivity of modifier evolution to genetic variation within demes. Finite541

populations subject to stochastic fluctuations may, however, exhibit much less variation542

than predicted by the HM (see fig. 3). How does loss of variation affect modifier dynamics,543

and does the resultant ESS differ from the HM prediction?544

Consider a situation with α∗∼αc (as predicted by the HM). Figure 6 shows that the545

HM accurately predicts modifier dynamics in individual-based simulations when the an-546

cestral population in which the modifier appears is weakly assortative and hybridized,547

i.e., αanc>αmod>α∗'αc (fig. 6a), but not within diverged ancestral populations with548

strong assortment, i.e., for αanc<αmod<α∗ (fig. 6b). Diverged populations tend to lose549

phenotypic variation and congeal around the selection optima (fig 3a); thus the effects550

that drove modifier evolution under the HM (involving selection for a specific level of551

hybridization or against outliers), no longer operate in the absence of variation. Conse-552

quently, while weakly assortative populations in individual-based simulations can evolve553

towards the divergence threshold αc∼α∗ by fixing small-effect modifiers that reduce α554

(in agreement with the HM), once in the diverged state, modifiers that reduce α even555

further, evolve neutrally and are not selected against (fig. 6b).556

The analysis so far assumes no mutation. However, mutation contributes substan-557

tially to polygenic variability (Barton and Keightley 2002). To test whether assortment558

evolution in populations with stable genetic variation agrees qualitatively with HM pre-559

dictions, we perform individual-based simulations allowing for recurrent mutation at the560
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Figure 6: Modifier dynamics from individual-based simulations of populations with N=
106 (points) vs. HM predictions (lines). Modifier frequency vs. time t is accurately
predicted by HM for αanc>α∗, i.e., when the ancestral population is hybridized (fig. 6a)
but not for αanc<α∗, i.e., when the ancestral population is diverged (fig. 6b). Modifiers
that change α in finite populations with αanc<α∗ undergo nearly neutral evolution (see
data points in fig. 6b, obtained by averaging over 5 replicates), and not the positive
selection predicted by the HM.

trait loci (Appendix S6). These show that large, finite populations with mutation have561

a well-defined ES level of assortment, as long as the mutation rate is not too low, with562

modifiers that take the population towards this ESS undergoing positive selection in both563

strongly assortative and weakly assortative populations (fig. S5, Appendix S6).564

Asymmetric models565

Several theoretical studies have argued that reinforcement is strongly affected by the566

directionality of gene flow, and occurs under more stringent conditions for continent-island567

migration than with reciprocal introgression (Servedio and Kirkpatrick 1997; Servedio568

2000). To test this, we study our model with m12 6=m21, and find that while asymmetric569

gene flow does make it more difficult for assortment-increasing modifiers to invade, it570

also facilitates higher divergence at any given assortment strength (see Appendix S7 and571

Discussion).572
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Discussion573

Our results highlight a number of subtle effects that arise in simple magic-trait scenarios574

of speciation when the trait is polygenic and can sustain high genetic variation. The core575

question addressed in the paper is: How does the interplay of gene flow, natural and sexual576

selection shape the evolution of such a trait along with the degree of mate discrimination577

for the trait? Studying the co-evolution of mate discrimination with the assortment trait578

on which it acts, sheds light on the evolutionary accessibility and stability of diverged579

states, thus providing a window into long-term divergence and speciation.580

Established assortment581

A striking feature of the onset of divergence in the model is its highly non-linear charac-582

ter, with small changes in the female preference range at αc triggering a steep increase583

in trait differences between the two demes (figs. 1b, 2a). The existence of sharp di-584

vergence thresholds has important implications for reverse speciation (Seehausen 2006),585

suggesting that the collapse of diverged species into a hybrid swarm due to reduced mate586

discrimination may be an abrupt and unpredictable event, especially if the assortment587

trait is polygenic.588

Threshold effects involving a precipitous rise in divergence over time are common in589

speciation models (Gavrilets 2004). The abrupt transition in this model at αc has590

the same underlying cause, namely, the synergistic changes in allele frequency that occur591

when genome-wide LD builds up to a critical value. In fact, stronger assortment generates592

higher LD (fig. 1b), thus inflating the variance of polygenic traits despite sexual selection593

against phenotypic outliers. This effect contributes significantly to the divergence of594

polygenic traits determined by unlinked or weakly linked loci. However, when trait loci595

are tightly linked, assortative mating has a qualitatively different effect, with stronger596

assortment reducing rather than increasing (the already high) LD and trait variance597

(Kirkpatrick and Nuismer 2004; Bürger and Schneider 2006). Thus, extending the598

28



model to include arbitrary linkage, as in de Cara et al. (2008), could provide a useful599

perspective on the conclusions of this study.600

Sharp transitions to a diverged state only occur when selection and migration are601

competing evolutionary forces and divergence is assortment-dependent. As in the model602

of van Doorn et al. (2000), which considers preference-trait mating in a similar two-deme603

setting, this model also exhibits an ecological speciation (low Vs,m) and a weak selection604

(high Vs,m) regime, where assortment has little effect and populations exhibit high or605

low divergence, independently of α (fig. 2b). Weak selection thresholds emerge quite606

generally in two-deme models, even with single-locus and AD assumptions (Brown and607

Pavlovic 1992; Meszéna et al 1997), and reflect a switch in the topology of the fitness608

landscape (from disruptive to stabilizing selection) near the generalist phenotype.609

Unlike the AD framework, which is mutation-limited, both the HM and the infinites-610

imal model assume high standing genetic variation— this allows for generation of new611

phenotypes via recombination, and long-term phenotypic change under selection, far be-612

yond the initial phenotypic range of the population. Thus, as long as assortment is strong,613

divergence occurs even if populations have limited initial phenotypic variation (
√
V0�µ)614

and do not include optimal phenotypes at the outset. Further, the long-term state of615

populations is largely insensitive to where they start out in phenotypic space. For in-616

stance, under strongly divergent selection (large µ) and low migration, sub-populations617

(with a modest segregation variance) can always evolve towards their respective optima618

via shifts in their phenotypic distributions, irrespective of whether they start out as gen-619

eralist populations or being locally adapted to one of the optima or clustered around any620

intermediate phenotype (Appendix S2). This contrasts with asexual populations in AD621

models (Meszéna et al 1997), which undergo evolutionary branching under similar eco-622

logical conditions only if they start out exactly at the generalist strategy (or are invaded623

by mutants with very large phenotypic effects).624
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Both the HM and the more widely applicable infinitesimal model make qualitatively625

similar predictions (see Appendix S3), in particular, that phenotypic variance always626

increases with increasing assortment. However, in individual-based simulations with finite627

L, increasing assortment may collapse variance by destabilizing polymorphisms. This ‘loss628

of polymorphism’ regime has been highlighted in several oligogenic models (Kirkpatrick629

and Nuismer 2004; Pennings et al. 2008; Rettelbach et al. 2013), and becomes630

important in the present model under certain conditions (see fig. 3), e.g., for unimodal631

populations subject to stabilizing or weakly divergent selection across demes (resulting632

in reduced variation around the generalist phenotype), or for diverged populations which633

hybridize weakly (and undergo loss of variation about the selection optima). However,634

even under these conditions, as L increases, selection coefficients responsible for loss of635

polymorphism at individual loci become very small, thus recovering the infinitesimal limit,636

in which polymorphic variation is more or less stable over other relevant timescales, e.g.,637

the time required for assortment modifiers to fix within a population. Moreover, even638

for moderate values of L, mutation (with rate U∼0.1) can maintain enough polymorphic639

variation for HM predictions to be valid over long timescales, at least in large populations640

(Appendix S6).641

Evolving assortment642

In the evolving assortment scenario, we explore how the evolutionarily stable (ES)643

assortment strength varies with selection and migration parameters, in order to determine644

when divergence and complete reproductive isolation occur at the ESS.645

We identify several qualitatively different regimes of assortment evolution. With weak646

selection, divergence is not possible at any assortment strength, and randomly mating647

populations are immune to invasion by modifiers that increase assortment. Such random648

mating ESS also arise in oligogenic models (Pennings et al. 2008; Rettelbach et al.649

2013) and simply reflect the absence of disruptive selection on the whole population.650
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Even when divergence is possible above a certain assortment threshold, the diverged651

state need not be an evolutionary attractor, in that the ES assortment may be lower than652

this threshold. This is typically the case when migration rates are high and/or selection653

across demes only moderately divergent, so that the gain in fitness due to local adaptation654

is offset by the loss in mating success that outliers suffer. Under these conditions, even655

though assortative mating increases trait variance, the accompanying sexual selection656

acts against assortment modifiers associated with the higher variance, thus constraining657

evolution of strong assortment and preventing divergence.658

This sort of antagonism between natural and sexual selection also plays a role in diploid,659

single-locus models of competitive speciation, where assortment evolution stops at low660

values despite disruptive selection, precisely because of positive sexual selection on het-661

erozygotes when they are widespread (Matessi et al. 2001; Otto et al. 2008; Pennings662

et al. 2008)—an effect similar to the one described above. Interestingly, this weak-663

assortment state is a global attractor in the polygenic model (with even highly diverged664

populations evolving towards it through the substitution of low-assortment modifiers, at665

least for the HM) but not in one-locus models.666

As selection across demes becomes more divergent, positive viability selection on mod-667

ifiers becomes strong enough to drive assortment levels up to the divergence threshold,668

so that populations are bimodal at the ESS. Significantly, there is effective stabilizing669

selection on the strength of assortment even within bimodal populations, with high-670

discrimination modifiers (α�αc∼α∗) undergoing negative selection due to their associa-671

tion with certain phenotypes, at least in the HM and infinitesimal model. We identify672

two distinct explanations for this, which apply in different parameter ranges.673

First, very high assortment depletes hybrids while simultaneously increasing the fre-674

quency of ill-adapted migrants within each deme (fig. 5c). The resultant selection against675

high assortment is essentially positive selection for moderate hybridization between di-676
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verged populations, which however must not be so high as to significantly reduce lo-677

cal adaptation. We verify that this kind of selection for hybridization is not sensitive678

to the ratio of hybrid to migrant fitness in each deme by also considering alternative679

(quadratic/stretched exponential) selection functions (results not shown).680

Second, strong assortment increases the frequency of outliers within resident and mi-681

grant sub-populations (fig. 5d); the lower fitness and reduced mating success of such682

outliers selects against the associated high-assortment modifier.683

The first explanation for selection against α<α∗ modifiers applies when there is sig-684

nificant hybridization between diverged populations, while the second is more relevant685

if there is complete reproductive isolation at the divergence threshold itself, i.e., if αc686

is so low that the switch to bimodality is enough to ensure a close to zero probability687

of heterospecific matings. This is typically the case when both 2µ and m are high (fig.688

5a); high migration, then, actually aids stronger reproductive isolation, by inducing fe-689

males to evolve very restrictive preference ranges at the ESS (see Rettelbach et al.690

(2013) for a somewhat similar effect in a one-locus model). Thus selection for inter-691

mediate assortment in this situation does not reflect incomplete reproductive isolation692

between diverged populations, as found by Servedio (2011), but arises instead due to693

selection against assortment-driven increase in sub-population variance, as also observed694

in polygenic models of competitive speciation (Doebeli 1996).695

In finite populations with zero or low mutational variance, complete reproductive isola-696

tion can also evolve via the action of stabilizing selection on diverged resident and migrant697

sub-populations in each deme. Stabilizing selection depletes standing variation within698

the sub-populations; as the phenotypic range of both migrants and residents shrinks, hy-699

bridization between the two becomes weaker, which further accelerates loss of variation,700

finally leading to the emergence of two distinct phenotypes, narrowly clustered around701

the optima, which are too ‘far apart’ to hybridize (fig. 3a). This finding has two general702
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implications. First, hybridization between incipient species may not be as much due to703

mating between the prototypical (fittest or most abundant) phenotypes, but is likely to704

involve outliers within each population. Thus the extent of hybridization between pop-705

ulations is intimately connected to the degree of phenotypic variation they harbour, or706

have harboured in the past. Second, contrary to the reinforcement view, in this situation,707

it is selection for increased discrimination that drives initial divergence, and stabilizing708

selection that causes populations to evolve complete reproductive isolation over longer709

timescales.710

To assess the robustness of our results, we also analyze the model with asymmetric711

migration and unequal selection strengths in the two demes. Most qualitative conclu-712

sions remain unaltered in the presence of these asymmetries. However, asymmetric gene713

flow inhibits the evolution of assortment over a wider parameter range than symmetric714

migration (fig. S6b, Appendix S7), as is consistent with earlier studies which suggest715

that indirect, LD-mediated selection on modifiers can be washed out by net influx of a716

foreign allele at the modifier locus (Servedio and Kirkpatrick 1997; Servedio 2000). This717

is, however, partially offset by the fact that for a fixed strength of assortment, divergence718

is higher with more asymmetric migration (fig. S6a, Appendix S7). Thus, island popula-719

tions subject to one-way introgression may evolve weaker assortment, but similar levels720

of divergence as populations with reciprocal introgression.721

Many of our results depend on the fact that populations experience stabilizing selection722

around well-defined optima. Thus it would be useful to consider how these conclusions723

change when selection in each deme is directional (Cotto et al. in preparation). A724

limitation of the model is that the preference range is assumed to be determined by a725

single locus. Modeling the preference range as a polygenic trait with similar amounts726

of standing variation as the assortment trait could be another interesting direction for727

future work.728
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In conclusion, divergence and assortment evolution based on highly polygenic traits is729

well-described by phenotypic approaches such as the infinitesimal and the hypergeometric730

model, at least over short timescales. Polygenic traits can maintain substantial genetic731

and phenotypic variation in spite of stabilizing selection when there is gene flow between732

demes and if density regulation occurs independently in each deme. Assortative mating733

further amplifies phenotypic variation by building up associations between loci, thus734

facilitating a strong response to divergent selection. The extent of genetic variation also735

affects the degree of hybridization between diverged populations and the evolution of736

discrimination within these, and is thus a crucial determinant of the fate of incipient737

species.738
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