Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
5 Publications
2021 | Published | Journal Article | IST-REx-ID: 8816 |

Runkel, I., & Szegedy, L. (2021). Area-dependent quantum field theory. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-020-03902-1
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Published | Journal Article | IST-REx-ID: 8325 |

Kalinin, N., & Shkolnikov, M. (2020). Sandpile solitons via smoothing of superharmonic functions. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-020-03828-8
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 554 |

Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-017-3064-x
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 1207 |

Bao, Z., Erdös, L., & Schnelli, K. (2017). Local law of addition of random matrices on optimal scale. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-016-2805-6
[Published Version]
View
| Files available
| DOI
| WoS
2017 | Published | Journal Article | IST-REx-ID: 741 |

Moser, T., & Seiringer, R. (2017). Stability of a fermionic N+1 particle system with point interactions. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-017-2980-0
[Published Version]
View
| Files available
| DOI
| WoS