Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
6 Publications
2022 | Published | Journal Article | IST-REx-ID: 11717 |

Drach, K., & Schleicher, D. (2022). Rigidity of Newton dynamics. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2022.108591
[Published Version]
View
| Files available
| DOI
| WoS
2022 | Published | Journal Article | IST-REx-ID: 10765 |

Cao, Y., & Huang, Z. (2022). Arithmetic purity of the Hardy-Littlewood property and geometric sieve for affine quadrics. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2022.108236
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9036 |

Virosztek, D. (2021). The metric property of the quantum Jensen-Shannon divergence. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2021.107595
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 10033 |

Ho, Q. P. (2021). The Atiyah-Bott formula and connectivity in chiral Koszul duality. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2021.107992
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 9588 |

Bandeira, A. S., Ferber, A., & Kwan, M. A. (2017). Resilience for the Littlewood–Offord problem. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2017.08.031
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2007 | Published | Journal Article | IST-REx-ID: 8511
Gorodetski, A., & Kaloshin, V. (2007). How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency. Advances in Mathematics. Elsevier. https://doi.org/10.1016/j.aim.2006.03.012
View
| DOI