Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
138 Publications
2019 | Draft | Preprint | IST-REx-ID: 7524 |

Deuchert, A., Mayer, S., & Seiringer, R. (n.d.). The free energy of the two-dimensional dilute Bose gas. I. Lower bound. arXiv:1910.03372. ArXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
2018 | Published | Journal Article | IST-REx-ID: 295 |

Lundholm, D., & Seiringer, R. (2018). Fermionic behavior of ideal anyons. Letters in Mathematical Physics. Springer. https://doi.org/10.1007/s11005-018-1091-y
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 399 |

Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation. EPL. IOP Publishing Ltd. https://doi.org/10.1209/0295-5075/121/10007
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 400 |

Deuchert, A., Geisinge, A., Hainzl, C., & Loss, M. (2018). Persistence of translational symmetry in the BCS model with radial pair interaction. Annales Henri Poincare. Springer. https://doi.org/10.1007/s00023-018-0665-7
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 446 |

Frank, R., Nam, P., & Van Den Bosch, H. (2018). The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Communications on Pure and Applied Mathematics. Wiley-Blackwell. https://doi.org/10.1002/cpa.21717
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 455 |

Benedikter, N. P., Sok, J., & Solovej, J. (2018). The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations. Annales Henri Poincare. Birkhäuser. https://doi.org/10.1007/s00023-018-0644-z
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Thesis | IST-REx-ID: 52 |

Moser, T. (2018). Point interactions in systems of fermions. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1043
[Published Version]
View
| Files available
| DOI
2018 | Published | Journal Article | IST-REx-ID: 554 |

Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). The Bogoliubov free energy functional II: The dilute Limit. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-017-3064-x
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| arXiv
2018 | Published | Conference Paper | IST-REx-ID: 11 |

Leopold, N. K., & Pickl, P. (2018). Mean-field limits of particles in interaction with quantised radiation fields (Vol. 270, pp. 185–214). Presented at the MaLiQS: Macroscopic Limits of Quantum Systems, Munich, Germany: Springer. https://doi.org/10.1007/978-3-030-01602-9_9
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 5983 |

Yakaboylu, E., Midya, B., Deuchert, A., Leopold, N. K., & Lemeshko, M. (2018). Theory of the rotating polaron: Spectrum and self-localization. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.98.224506
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 6002 |

Napiórkowski, M. M., Reuvers, R., & Solovej, J. P. (2018). The Bogoliubov free energy functional I: Existence of minimizers and phase diagram. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-018-1232-6
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Journal Article | IST-REx-ID: 154 |

Moser, T., & Seiringer, R. (2018). Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. Springer. https://doi.org/10.1007/s11040-018-9275-3
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 180 |

Lewi, M., Lieb, É., & Seiringer, R. (2018). Statistical mechanics of the uniform electron gas. Journal de l’Ecole Polytechnique - Mathematiques. Ecole Polytechnique. https://doi.org/10.5802/jep.64
[Published Version]
View
| Files available
| DOI
| arXiv
2017 | Published | Journal Article | IST-REx-ID: 484 |

Nam, P., & Napiórkowski, M. M. (2017). Bogoliubov correction to the mean-field dynamics of interacting bosons. Advances in Theoretical and Mathematical Physics. International Press. https://doi.org/10.4310/ATMP.2017.v21.n3.a4
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2017 | Published | Journal Article | IST-REx-ID: 912 |

Deuchert, A. (2017). A lower bound for the BCS functional with boundary conditions at infinity. Journal of Mathematical Physics. AIP Publishing. https://doi.org/10.1063/1.4996580
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 1120 |

Li, X., Seiringer, R., & Lemeshko, M. (2017). Angular self-localization of impurities rotating in a bosonic bath. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.95.033608
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 1198 |

Moser, T., & Seiringer, R. (2017). Triviality of a model of particles with point interactions in the thermodynamic limit. Letters in Mathematical Physics. Springer. https://doi.org/10.1007/s11005-016-0915-x
[Published Version]
View
| Files available
| DOI
| WoS
2017 | Published | Journal Article | IST-REx-ID: 632 |

Lewin, M., Nam, P., & Rougerie, N. (2017). A note on 2D focusing many boson systems. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/13468
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2017 | Published | Journal Article | IST-REx-ID: 739 |

Nam, P., & Napiórkowski, M. M. (2017). A note on the validity of Bogoliubov correction to mean field dynamics. Journal de Mathématiques Pures et Appliquées. Elsevier. https://doi.org/10.1016/j.matpur.2017.05.013
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 741 |

Moser, T., & Seiringer, R. (2017). Stability of a fermionic N+1 particle system with point interactions. Communications in Mathematical Physics. Springer. https://doi.org/10.1007/s00220-017-2980-0
[Published Version]
View
| Files available
| DOI
| WoS