Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
117 Publications
2021 | Published | Journal Article | IST-REx-ID: 9571 |

Ramezani-Kebrya, A., Faghri, F., Markov, I., Aksenov, V., Alistarh, D.-A., & Roy, D. M. (2021). NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization. Journal of Machine Learning Research. Journal of Machine Learning Research.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 9620 |

Alistarh, D.-A., & Davies, P. (2021). Collecting coupons is faster with friends. In Structural Information and Communication Complexity (Vol. 12810, pp. 3–12). Wrocław, Poland: Springer Nature. https://doi.org/10.1007/978-3-030-79527-6_1
[Preprint]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9678 |

Brandt, S., Keller, B., Rybicki, J., Suomela, J., & Uitto, J. (2021). Efficient load-balancing through distributed token dropping. In Annual ACM Symposium on Parallelism in Algorithms and Architectures (pp. 129–139). Virtual Event, United States. https://doi.org/10.1145/3409964.3461785
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 9823 |

Alistarh, D.-A., Ellen, F., & Rybicki, J. (2021). Wait-free approximate agreement on graphs. In Structural Information and Communication Complexity (Vol. 12810, pp. 87–105). Wrocław, Poland: Springer Nature. https://doi.org/10.1007/978-3-030-79527-6_6
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9827 |

Chatterjee, B., Walulya, I., & Tsigas, P. (2021). Concurrent linearizable nearest neighbour search in LockFree-kD-tree. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2021.06.041
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2021 | Published | Conference Paper | IST-REx-ID: 9933 |

Czumaj, A., Davies, P., & Parter, M. (2021). Component stability in low-space massively parallel computation. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (pp. 481–491). Virtual, Italy: Association for Computing Machinery. https://doi.org/10.1145/3465084.3467903
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 9935 |

Czumaj, A., Davies, P., & Parter, M. (2021). Improved deterministic (Δ+1) coloring in low-space MPC. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (pp. 469–479). Virtual, Italy: Association for Computing Machinery. https://doi.org/10.1145/3465084.3467937
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2021 | Published | Conference Paper | IST-REx-ID: 9951
Alistarh, D.-A., Töpfer, M., & Uznański, P. (2021). Comparison dynamics in population protocols. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (pp. 55–65). Virtual, Italy: Association for Computing Machinery. https://doi.org/10.1145/3465084.3467915
View
| DOI
| WoS
2021 | Published | Conference Paper | IST-REx-ID: 10049 |

Klein, K., Pascual Perez, G., Walter, M., Kamath Hosdurg, C., Capretto, M., Cueto Noval, M., … Pietrzak, K. Z. (2021). Keep the dirt: tainted TreeKEM, adaptively and actively secure continuous group key agreement. In 2021 IEEE Symposium on Security and Privacy (pp. 268–284). San Francisco, CA, United States: IEEE. https://doi.org/10.1109/sp40001.2021.00035
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
2021 | Published | Journal Article | IST-REx-ID: 10180 |

Hoefler, T., Alistarh, D.-A., Ben-Nun, T., Dryden, N., & Peste, E.-A. (2021). Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. Journal of Machine Learning Research. Journal of Machine Learning Research.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10216 |

Chatterjee, B., Peri, S., & Sa, M. (2021). Brief announcement: Non-blocking dynamic unbounded graphs with worst-case amortized bounds. In 35th International Symposium on Distributed Computing (Vol. 209). Freiburg, Germany: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2021.52
[Published Version]
View
| Files available
| DOI
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10217 |

Alistarh, D.-A., Gelashvili, R., & Nadiradze, G. (2021). Lower bounds for shared-memory leader election under bounded write contention. In 35th International Symposium on Distributed Computing (Vol. 209). Freiburg, Germany: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2021.4
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 10218 |

Alistarh, D.-A., Gelashvili, R., & Rybicki, J. (2021). Brief announcement: Fast graphical population protocols. In 35th International Symposium on Distributed Computing (Vol. 209). Freiburg, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2021.43
[Published Version]
View
| Files available
| DOI
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10219 |

Korhonen, J., Paz, A., Rybicki, J., Schmid, S., & Suomela, J. (2021). Brief announcement: Sinkless orientation is hard also in the supported LOCAL model. In 35th International Symposium on Distributed Computing (Vol. 209). Freiburg, Germany: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2021.58
[Published Version]
View
| Files available
| DOI
| arXiv
2021 | Published | Thesis | IST-REx-ID: 10429 |

Nadiradze, G. (2021). On achieving scalability through relaxation. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10429
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 10432 |

Nadiradze, G., Markov, I., Chatterjee, B., Kungurtsev, V., & Alistarh, D.-A. (2021). Elastic consistency: A practical consistency model for distributed stochastic gradient descent. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 9037–9045). Virtual.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10435 |

Nadiradze, G., Sabour, A., Davies, P., Li, S., & Alistarh, D.-A. (2021). Asynchronous decentralized SGD with quantized and local updates. In 35th Conference on Neural Information Processing Systems. Sydney, Australia: Neural Information Processing Systems Foundation.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10853 |

Fedorov, A., Koval, N., & Alistarh, D.-A. (2021). A scalable concurrent algorithm for dynamic connectivity. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures (pp. 208–220). Virtual, Online: Association for Computing Machinery. https://doi.org/10.1145/3409964.3461810
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 10854 |

Foerster, K.-T., Korhonen, J., Paz, A., Rybicki, J., & Schmid, S. (2021). Input-dynamic distributed algorithms for communication networks. In Abstract Proceedings of the 2021 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems (pp. 71–72). Virtual, Online: Association for Computing Machinery. https://doi.org/10.1145/3410220.3453923
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 10855 |

Foerster, K.-T., Korhonen, J., Paz, A., Rybicki, J., & Schmid, S. (2021). Input-dynamic distributed algorithms for communication networks. Proceedings of the ACM on Measurement and Analysis of Computing Systems. Association for Computing Machinery. https://doi.org/10.1145/3447384
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv