Please note that ISTA Research Explorer no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
114 Publications
2023 | Accepted | Conference Paper | IST-REx-ID: 13053 |

Peste, Elena-Alexandra, et al. “CrAM: A Compression-Aware Minimizer.” 11th International Conference on Learning Representations .
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2023 | Published | Thesis | IST-REx-ID: 13074 |

Peste, Elena-Alexandra. Efficiency and Generalization of Sparse Neural Networks. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13074.
[Published Version]
View
| Files available
| DOI
2023 | Published | Journal Article | IST-REx-ID: 14320 |

Henderson, Paul M., et al. “Deep Learning Extraction of Band Structure Parameters from Density of States: A Case Study on Trilayer Graphene.” Physical Review B, vol. 108, no. 12, 125411, American Physical Society, 2023, doi:10.1103/physrevb.108.125411.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14410
Tomaszewska, Paulina, and Christoph Lampert. “On the Implementation of Baselines and Lightweight Conditional Model Extrapolation (LIMES) under Class-Prior Shift.” International Workshop on Reproducible Research in Pattern Recognition, vol. 14068, Springer Nature, 2023, pp. 67–73, doi:10.1007/978-3-031-40773-4_6.
View
| DOI
2023 | Published | Journal Article | IST-REx-ID: 14446 |

Jakubík, Jozef, et al. “Against the Flow of Time with Multi-Output Models.” Measurement Science Review, vol. 23, no. 4, Sciendo, 2023, pp. 175–83, doi:10.2478/msr-2023-0023.
[Published Version]
View
| Files available
| DOI
2023 | Published | Conference Paper | IST-REx-ID: 14771 |

Iofinova, Eugenia B., et al. “Bias in Pruned Vision Models: In-Depth Analysis and Countermeasures.” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023, pp. 24364–73, doi:10.1109/cvpr52729.2023.02334.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | In Press | Conference Paper | IST-REx-ID: 14921 |

Súkeník, Peter, et al. “Deep Neural Collapse Is Provably Optimal for the Deep Unconstrained Features Model.” 37th Annual Conference on Neural Information Processing Systems.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2023 | Submitted | Preprint | IST-REx-ID: 15039 |

Prach, Bernd, and Christoph Lampert. “1-Lipschitz Neural Networks Are More Expressive with N-Activations.” ArXiv, 2311.06103, doi:10.48550/ARXIV.2311.06103.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12299 |

Iofinova, Eugenia B., et al. “How Well Do Sparse ImageNet Models Transfer?” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Institute of Electrical and Electronics Engineers, 2022, pp. 12256–66, doi:10.1109/cvpr52688.2022.01195.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12495 |

Iofinova, Eugenia B., et al. “FLEA: Provably Robust Fair Multisource Learning from Unreliable Training Data.” Transactions on Machine Learning Research, ML Research Press, 2022.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2022 | Submitted | Preprint | IST-REx-ID: 12660 |

Scott, Jonathan A., et al. “Cross-Client Label Propagation for Transductive Federated Learning.” ArXiv, 2210.06434, doi:10.48550/arXiv.2210.06434.
[Preprint]
View
| Files available
| DOI
| arXiv
2022 | Submitted | Preprint | IST-REx-ID: 12662 |

Súkeník, Peter, and Christoph Lampert. “Generalization in Multi-Objective Machine Learning.” ArXiv, 2208.13499, doi:10.48550/arXiv.2208.13499.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 13241 |

Konstantinov, Nikola H., and Christoph Lampert. “On the Impossibility of Fairness-Aware Learning from Corrupted Data.” Proceedings of Machine Learning Research, vol. 171, ML Research Press, 2022, pp. 59–83.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 11839 |

Prach, Bernd, and Christoph Lampert. “Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks.” Computer Vision – ECCV 2022, vol. 13681, Springer Nature, 2022, pp. 350–65, doi:10.1007/978-3-031-19803-8_21.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12161 |

Tomaszewska, Paulina, and Christoph Lampert. “Lightweight Conditional Model Extrapolation for Streaming Data under Class-Prior Shift.” 26th International Conference on Pattern Recognition, vol. 2022, Institute of Electrical and Electronics Engineers, 2022, pp. 2128–34, doi:10.1109/icpr56361.2022.9956195.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 10752
Lampert, Jasmin, and Christoph Lampert. “Overcoming Rare-Language Discrimination in Multi-Lingual Sentiment Analysis.” 2021 IEEE International Conference on Big Data, IEEE, 2022, pp. 5185–92, doi:10.1109/bigdata52589.2021.9672003.
View
| DOI
| WoS
2022 | Published | Thesis | IST-REx-ID: 10799 |

Konstantinov, Nikola H. Robustness and Fairness in Machine Learning. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:10799.
[Published Version]
View
| Files available
| DOI
2022 | Published | Journal Article | IST-REx-ID: 10802 |

Konstantinov, Nikola H., and Christoph Lampert. “Fairness-Aware PAC Learning from Corrupted Data.” Journal of Machine Learning Research, vol. 23, ML Research Press, 2022, pp. 1–60.
[Published Version]
View
| Files available
| arXiv
2021 | Published | Book Chapter | IST-REx-ID: 14987
Lampert, Christoph. “Zero-Shot Learning.” Computer Vision, edited by Katsushi Ikeuchi, 2nd ed., Springer, 2021, pp. 1395–97, doi:10.1007/978-3-030-63416-2_874.
View
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9210 |

Volhejn, Vaclav, and Christoph Lampert. “Does SGD Implicitly Optimize for Smoothness?” 42nd German Conference on Pattern Recognition, vol. 12544, Springer, 2021, pp. 246–59, doi:10.1007/978-3-030-71278-5_18.
[Submitted Version]
View
| Files available
| DOI