{"intvolume":" 104","volume":104,"year":"2021","acknowledgement":"We thank Rafael Barfknecht for useful discussions. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411 (A.G.\r\nand A.G.V.). M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). Y.P. and O.M. acknowledge funding from the Nidersachsen Ministry of Science and Culture, and from the\r\nAcademia Sinica Research Program. O.M. is thankful for support through the Harry de Jur Chair in Applied Science.","isi":1,"project":[{"grant_number":"754411","_id":"260C2330-B435-11E9-9278-68D0E5697425","name":"ISTplus - Postdoctoral Fellowships","call_identifier":"H2020"},{"call_identifier":"H2020","_id":"2688CF98-B435-11E9-9278-68D0E5697425","name":"Angulon: physics and applications of a new quasiparticle","grant_number":"801770"}],"doi":"10.1103/physrevb.104.024430","publication":"Physical Review B","author":[{"orcid":"0000-0003-0393-5525","last_name":"Volosniev","first_name":"Artem","full_name":"Volosniev, Artem","id":"37D278BC-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Alpern, Hen","last_name":"Alpern","first_name":"Hen"},{"full_name":"Paltiel, Yossi","last_name":"Paltiel","first_name":"Yossi"},{"last_name":"Millo","first_name":"Oded","full_name":"Millo, Oded"},{"full_name":"Lemeshko, Mikhail","id":"37CB05FA-F248-11E8-B48F-1D18A9856A87","last_name":"Lemeshko","first_name":"Mikhail","orcid":"0000-0002-6990-7802"},{"first_name":"Areg","last_name":"Ghazaryan","id":"4AF46FD6-F248-11E8-B48F-1D18A9856A87","full_name":"Ghazaryan, Areg","orcid":"0000-0001-9666-3543"}],"external_id":{"isi":["000678780800003"],"arxiv":["2101.05173"]},"publication_identifier":{"issn":["2469-9950"],"eissn":["2469-9969"]},"ec_funded":1,"article_type":"original","citation":{"ama":"Volosniev A, Alpern H, Paltiel Y, Millo O, Lemeshko M, Ghazaryan A. Interplay between friction and spin-orbit coupling as a source of spin polarization. Physical Review B. 2021;104(2). doi:10.1103/physrevb.104.024430","ista":"Volosniev A, Alpern H, Paltiel Y, Millo O, Lemeshko M, Ghazaryan A. 2021. Interplay between friction and spin-orbit coupling as a source of spin polarization. Physical Review B. 104(2), 024430.","chicago":"Volosniev, Artem, Hen Alpern, Yossi Paltiel, Oded Millo, Mikhail Lemeshko, and Areg Ghazaryan. “Interplay between Friction and Spin-Orbit Coupling as a Source of Spin Polarization.” Physical Review B. American Physical Society, 2021. https://doi.org/10.1103/physrevb.104.024430.","apa":"Volosniev, A., Alpern, H., Paltiel, Y., Millo, O., Lemeshko, M., & Ghazaryan, A. (2021). Interplay between friction and spin-orbit coupling as a source of spin polarization. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.104.024430","short":"A. Volosniev, H. Alpern, Y. Paltiel, O. Millo, M. Lemeshko, A. Ghazaryan, Physical Review B 104 (2021).","mla":"Volosniev, Artem, et al. “Interplay between Friction and Spin-Orbit Coupling as a Source of Spin Polarization.” Physical Review B, vol. 104, no. 2, 024430, American Physical Society, 2021, doi:10.1103/physrevb.104.024430.","ieee":"A. Volosniev, H. Alpern, Y. Paltiel, O. Millo, M. Lemeshko, and A. Ghazaryan, “Interplay between friction and spin-orbit coupling as a source of spin polarization,” Physical Review B, vol. 104, no. 2. American Physical Society, 2021."},"language":[{"iso":"eng"}],"_id":"9770","article_number":"024430","oa":1,"oa_version":"Preprint","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","date_created":"2021-08-04T15:05:32Z","publisher":"American Physical Society","scopus_import":"1","title":"Interplay between friction and spin-orbit coupling as a source of spin polarization","quality_controlled":"1","status":"public","type":"journal_article","day":"01","article_processing_charge":"No","month":"07","date_updated":"2023-08-10T14:27:07Z","publication_status":"published","date_published":"2021-07-01T00:00:00Z","issue":"2","department":[{"_id":"MiLe"}],"abstract":[{"lang":"eng","text":"We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that the friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data."}],"main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/2101.05173"}]}