{"author":[{"first_name":"Ranita","id":"3C2B033E-F248-11E8-B48F-1D18A9856A87","full_name":"Biswas, Ranita","orcid":"0000-0002-5372-7890","last_name":"Biswas"},{"id":"34D2A09C-F248-11E8-B48F-1D18A9856A87","first_name":"Sebastiano","last_name":"Cultrera di Montesano","orcid":"0000-0001-6249-0832","full_name":"Cultrera di Montesano, Sebastiano"},{"first_name":"Herbert","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-9823-6833","full_name":"Edelsbrunner, Herbert","last_name":"Edelsbrunner"},{"first_name":"Morteza","full_name":"Saghafian, Morteza","last_name":"Saghafian"}],"publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","intvolume":" 189","publication_identifier":{"isbn":["9783959771849"],"issn":["18688969"]},"date_created":"2021-06-27T22:01:48Z","abstract":[{"text":"Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.","lang":"eng"}],"oa":1,"doi":"10.4230/LIPIcs.SoCG.2021.16","title":"Counting cells of order-k voronoi tessellations in ℝ3 with morse theory","conference":{"location":"Online","end_date":"2021-06-11","name":"SoCG: International Symposium on Computational Geometry","start_date":"2021-06-07"},"department":[{"_id":"HeEd"}],"article_processing_charge":"No","status":"public","scopus_import":"1","project":[{"call_identifier":"H2020","_id":"266A2E9E-B435-11E9-9278-68D0E5697425","name":"Alpha Shape Theory Extended","grant_number":"788183"},{"_id":"268116B8-B435-11E9-9278-68D0E5697425","call_identifier":"FWF","grant_number":"Z00342","name":"The Wittgenstein Prize"},{"_id":"0aa4bc98-070f-11eb-9043-e6fff9c6a316","name":"Discretization in Geometry and Dynamics","grant_number":"I4887"}],"oa_version":"Published Version","citation":{"ama":"Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In: Leibniz International Proceedings in Informatics. Vol 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.SoCG.2021.16","ista":"Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. 2021. Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. Leibniz International Proceedings in Informatics. SoCG: International Symposium on Computational Geometry, LIPIcs, vol. 189, 16.","chicago":"Biswas, Ranita, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. “Counting Cells of Order-k Voronoi Tessellations in ℝ3 with Morse Theory.” In Leibniz International Proceedings in Informatics, Vol. 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.16.","mla":"Biswas, Ranita, et al. “Counting Cells of Order-k Voronoi Tessellations in ℝ3 with Morse Theory.” Leibniz International Proceedings in Informatics, vol. 189, 16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.SoCG.2021.16.","short":"R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, M. Saghafian, in:, Leibniz International Proceedings in Informatics, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.","ieee":"R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, and M. Saghafian, “Counting cells of order-k voronoi tessellations in ℝ3 with morse theory,” in Leibniz International Proceedings in Informatics, Online, 2021, vol. 189.","apa":"Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16"},"date_published":"2021-06-02T00:00:00Z","volume":189,"publication":"Leibniz International Proceedings in Informatics","type":"conference","ddc":["516"],"year":"2021","day":"02","user_id":"D865714E-FA4E-11E9-B85B-F5C5E5697425","quality_controlled":"1","month":"06","alternative_title":["LIPIcs"],"_id":"9604","language":[{"iso":"eng"}],"ec_funded":1,"article_number":"16","file":[{"access_level":"open_access","file_id":"9611","relation":"main_file","date_created":"2021-06-28T13:11:39Z","checksum":"22b11a719018b22ecba2471b51f2eb40","success":1,"date_updated":"2021-06-28T13:11:39Z","file_name":"2021_LIPIcs_Biswas.pdf","content_type":"application/pdf","creator":"asandaue","file_size":727817}],"file_date_updated":"2021-06-28T13:11:39Z","tmp":{"short":"CC BY (4.0)","image":"/images/cc_by.png","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)"},"has_accepted_license":"1","date_updated":"2023-02-23T14:02:28Z","publication_status":"published"}