{"year":"2021","intvolume":" 189","volume":189,"ddc":["516"],"project":[{"grant_number":"788183","_id":"266A2E9E-B435-11E9-9278-68D0E5697425","name":"Alpha Shape Theory Extended","call_identifier":"H2020"},{"call_identifier":"FWF","_id":"268116B8-B435-11E9-9278-68D0E5697425","name":"The Wittgenstein Prize","grant_number":"Z00342"},{"grant_number":"I4887","name":"Discretization in Geometry and Dynamics","_id":"0aa4bc98-070f-11eb-9043-e6fff9c6a316"}],"file_date_updated":"2021-06-28T13:11:39Z","publication_identifier":{"issn":["18688969"],"isbn":["9783959771849"]},"doi":"10.4230/LIPIcs.SoCG.2021.16","publication":"Leibniz International Proceedings in Informatics","has_accepted_license":"1","author":[{"orcid":"0000-0002-5372-7890","full_name":"Biswas, Ranita","id":"3C2B033E-F248-11E8-B48F-1D18A9856A87","first_name":"Ranita","last_name":"Biswas"},{"orcid":"0000-0001-6249-0832","id":"34D2A09C-F248-11E8-B48F-1D18A9856A87","full_name":"Cultrera di Montesano, Sebastiano","last_name":"Cultrera di Montesano","first_name":"Sebastiano"},{"orcid":"0000-0002-9823-6833","full_name":"Edelsbrunner, Herbert","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","last_name":"Edelsbrunner","first_name":"Herbert"},{"last_name":"Saghafian","first_name":"Morteza","full_name":"Saghafian, Morteza"}],"language":[{"iso":"eng"}],"_id":"9604","article_number":"16","ec_funded":1,"citation":{"ieee":"R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, and M. Saghafian, “Counting cells of order-k voronoi tessellations in ℝ3 with morse theory,” in Leibniz International Proceedings in Informatics, Online, 2021, vol. 189.","mla":"Biswas, Ranita, et al. “Counting Cells of Order-k Voronoi Tessellations in ℝ3 with Morse Theory.” Leibniz International Proceedings in Informatics, vol. 189, 16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.SoCG.2021.16.","short":"R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, M. Saghafian, in:, Leibniz International Proceedings in Informatics, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.","ama":"Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In: Leibniz International Proceedings in Informatics. Vol 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.SoCG.2021.16","chicago":"Biswas, Ranita, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. “Counting Cells of Order-k Voronoi Tessellations in ℝ3 with Morse Theory.” In Leibniz International Proceedings in Informatics, Vol. 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.16.","apa":"Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16","ista":"Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. 2021. Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. Leibniz International Proceedings in Informatics. SoCG: International Symposium on Computational Geometry, LIPIcs, vol. 189, 16."},"conference":{"start_date":"2021-06-07","name":"SoCG: International Symposium on Computational Geometry","location":"Online","end_date":"2021-06-11"},"publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","scopus_import":"1","oa":1,"oa_version":"Published Version","date_created":"2021-06-27T22:01:48Z","user_id":"D865714E-FA4E-11E9-B85B-F5C5E5697425","alternative_title":["LIPIcs"],"quality_controlled":"1","title":"Counting cells of order-k voronoi tessellations in ℝ3 with morse theory","status":"public","article_processing_charge":"No","month":"06","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"date_updated":"2023-02-23T14:02:28Z","file":[{"success":1,"file_id":"9611","file_size":727817,"date_created":"2021-06-28T13:11:39Z","date_updated":"2021-06-28T13:11:39Z","content_type":"application/pdf","access_level":"open_access","creator":"asandaue","file_name":"2021_LIPIcs_Biswas.pdf","checksum":"22b11a719018b22ecba2471b51f2eb40","relation":"main_file"}],"type":"conference","day":"02","department":[{"_id":"HeEd"}],"abstract":[{"text":"Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.","lang":"eng"}],"publication_status":"published","date_published":"2021-06-02T00:00:00Z"}