{"main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/2006.01275"}],"date_updated":"2023-08-08T14:08:08Z","publication_status":"published","isi":1,"language":[{"iso":"eng"}],"article_number":"235201","month":"06","quality_controlled":"1","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","day":"15","_id":"9570","type":"journal_article","publication":"Physical Review B","volume":103,"citation":{"chicago":"Puglia, Denise, E. A. Martinez, G. C. Ménard, A. Pöschl, S. Gronin, G. C. Gardner, R. Kallaher, et al. “Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire.” Physical Review B. American Physical Society, 2021. https://doi.org/10.1103/PhysRevB.103.235201.","ieee":"D. Puglia et al., “Closing of the induced gap in a hybrid superconductor-semiconductor nanowire,” Physical Review B, vol. 103, no. 23. American Physical Society, 2021.","mla":"Puglia, Denise, et al. “Closing of the Induced Gap in a Hybrid Superconductor-Semiconductor Nanowire.” Physical Review B, vol. 103, no. 23, 235201, American Physical Society, 2021, doi:10.1103/PhysRevB.103.235201.","short":"D. Puglia, E.A. Martinez, G.C. Ménard, A. Pöschl, S. Gronin, G.C. Gardner, R. Kallaher, M.J. Manfra, C.M. Marcus, A.P. Higginbotham, L. Casparis, Physical Review B 103 (2021).","ista":"Puglia D, Martinez EA, Ménard GC, Pöschl A, Gronin S, Gardner GC, Kallaher R, Manfra MJ, Marcus CM, Higginbotham AP, Casparis L. 2021. Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B. 103(23), 235201.","ama":"Puglia D, Martinez EA, Ménard GC, et al. Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B. 2021;103(23). doi:10.1103/PhysRevB.103.235201","apa":"Puglia, D., Martinez, E. A., Ménard, G. C., Pöschl, A., Gronin, S., Gardner, G. C., … Casparis, L. (2021). Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.103.235201"},"date_published":"2021-06-15T00:00:00Z","acknowledgement":"We acknowledge insightful discussions with K. Flensberg, E. B. Hansen, T. Karzig, R. Lutchyn, D. Pikulin, E. Prada, and R. Aguado. This work was supported by Microsoft Project Q and the Danmarks Grundforskningsfond. C.M.M. acknowledges support from the Villum Fonden. A.P.H. and L.C. contributed equally to this work.","year":"2021","issue":"23","scopus_import":"1","status":"public","oa_version":"Preprint","related_material":{"record":[{"relation":"research_data","status":"public","id":"13080"}]},"title":"Closing of the induced gap in a hybrid superconductor-semiconductor nanowire","article_type":"original","doi":"10.1103/PhysRevB.103.235201","external_id":{"arxiv":["2006.01275"],"isi":["000661512500002"]},"article_processing_charge":"No","department":[{"_id":"AnHi"}],"intvolume":" 103","publisher":"American Physical Society","author":[{"first_name":"Denise","id":"4D495994-AE37-11E9-AC72-31CAE5697425","full_name":"Puglia, Denise","last_name":"Puglia"},{"first_name":"E. A.","full_name":"Martinez, E. A.","last_name":"Martinez"},{"first_name":"G. C.","full_name":"Ménard, G. C.","last_name":"Ménard"},{"first_name":"A.","full_name":"Pöschl, A.","last_name":"Pöschl"},{"first_name":"S.","last_name":"Gronin","full_name":"Gronin, S."},{"first_name":"G. C.","last_name":"Gardner","full_name":"Gardner, G. C."},{"first_name":"R.","last_name":"Kallaher","full_name":"Kallaher, R."},{"first_name":"M. J.","last_name":"Manfra","full_name":"Manfra, M. J."},{"last_name":"Marcus","full_name":"Marcus, C. M.","first_name":"C. M."},{"first_name":"Andrew P","id":"4AD6785A-F248-11E8-B48F-1D18A9856A87","full_name":"Higginbotham, Andrew P","orcid":"0000-0003-2607-2363","last_name":"Higginbotham"},{"full_name":"Casparis, L.","last_name":"Casparis","first_name":"L."}],"oa":1,"abstract":[{"text":"We present conductance-matrix measurements in long, three-terminal hybrid superconductor-semiconductor nanowires, and compare with theoretical predictions of a magnetic-field-driven, topological quantum phase transition. By examining the nonlocal conductance, we identify the closure of the excitation gap in the bulk of the semiconductor before the emergence of zero-bias peaks, ruling out spurious gap-closure signatures from localized states. We observe that after the gap closes, nonlocal signals and zero-bias peaks fluctuate strongly at both ends, inconsistent with a simple picture of clean topological superconductivity.","lang":"eng"}],"date_created":"2021-06-20T22:01:33Z","publication_identifier":{"issn":["24699950"],"eissn":["24699969"]}}