{"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_created":"2021-02-28T23:01:25Z","oa_version":"None","scopus_import":"1","publisher":"Springer Nature","status":"public","quality_controlled":"1","title":"A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion","day":"01","type":"journal_article","date_updated":"2021-03-03T09:43:14Z","article_processing_charge":"No","month":"09","issue":"9","publication_status":"published","date_published":"2020-09-01T00:00:00Z","abstract":[{"lang":"eng","text":"Bending-active structures are able to efficiently produce complex curved shapes from flat panels. The desired deformation of the panels derives from the proper selection of their elastic properties. Optimized panels, called FlexMaps, are designed such that, once they are bent and assembled, the resulting static equilibrium configuration matches a desired input 3D shape. The FlexMaps elastic properties are controlled by locally varying spiraling geometric mesostructures, which are optimized in size and shape to match specific bending requests, namely the global curvature of the target shape. The design pipeline starts from a quad mesh representing the input 3D shape, which defines the edge size and the total amount of spirals: every quad will embed one spiral. Then, an optimization algorithm tunes the geometry of the spirals by using a simplified pre-computed rod model. This rod model is derived from a non-linear regression algorithm which approximates the non-linear behavior of solid FEM spiral models subject to hundreds of load combinations. This innovative pipeline has been applied to the project of a lightweight plywood pavilion named FlexMaps Pavilion, which is a single-layer piecewise twisted arch that fits a bounding box of 3.90x3.96x3.25 meters. This case study serves to test the applicability of this methodology at the architectural scale. The structure is validated via FE analyses and the fabrication of the full scale prototype."}],"department":[{"_id":"BeBi"}],"volume":2,"intvolume":" 2","year":"2020","acknowledgement":"The FlexMaps Pavilion has been awarded First Prize at the “Competition and Exhibition of innovative lightweight structures” organized by the IASS Working Group 21 within the FORM and FORCE, joint international conference of IASS Symposium 2019 and Structural Membranes 2019 (Barcelona, 7-11 October 2019) with the following motivation: “for its structural innovation of bending-twisting system, connection constructability and exquisite craftmanship”[20]. The authors would like to acknowledge the Visual Computing Lab Staff of ISTI - CNR, in particular Thomas Alderighi, Marco Callieri, Paolo Pingi; Antonio Rizzo of IPCF - CNR; and the Administrative Staff of ISTI - CNR. This research was partially funded by the EU H2020 Programme EVOCATION: Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication (grant no. 813170).","doi":"10.1007/s42452-020-03305-w","author":[{"full_name":"Laccone, Francesco","last_name":"Laccone","first_name":"Francesco"},{"full_name":"Malomo, Luigi","first_name":"Luigi","last_name":"Malomo"},{"first_name":"Jesus","last_name":"Perez Rodriguez","id":"2DC83906-F248-11E8-B48F-1D18A9856A87","full_name":"Perez Rodriguez, Jesus"},{"full_name":"Pietroni, Nico","first_name":"Nico","last_name":"Pietroni"},{"last_name":"Ponchio","first_name":"Federico","full_name":"Ponchio, Federico"},{"last_name":"Bickel","first_name":"Bernd","id":"49876194-F248-11E8-B48F-1D18A9856A87","full_name":"Bickel, Bernd","orcid":"0000-0001-6511-9385"},{"full_name":"Cignoni, Paolo","last_name":"Cignoni","first_name":"Paolo"}],"publication":"SN Applied Sciences","publication_identifier":{"eissn":["25233971"]},"article_type":"original","citation":{"ista":"Laccone F, Malomo L, Perez Rodriguez J, Pietroni N, Ponchio F, Bickel B, Cignoni P. 2020. A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. 2(9), 1505.","apa":"Laccone, F., Malomo, L., Perez Rodriguez, J., Pietroni, N., Ponchio, F., Bickel, B., & Cignoni, P. (2020). A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. Springer Nature. https://doi.org/10.1007/s42452-020-03305-w","chicago":"Laccone, Francesco, Luigi Malomo, Jesus Perez Rodriguez, Nico Pietroni, Federico Ponchio, Bernd Bickel, and Paolo Cignoni. “A Bending-Active Twisted-Arch Plywood Structure: Computational Design and Fabrication of the FlexMaps Pavilion.” SN Applied Sciences. Springer Nature, 2020. https://doi.org/10.1007/s42452-020-03305-w.","ama":"Laccone F, Malomo L, Perez Rodriguez J, et al. A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences. 2020;2(9). doi:10.1007/s42452-020-03305-w","short":"F. Laccone, L. Malomo, J. Perez Rodriguez, N. Pietroni, F. Ponchio, B. Bickel, P. Cignoni, SN Applied Sciences 2 (2020).","mla":"Laccone, Francesco, et al. “A Bending-Active Twisted-Arch Plywood Structure: Computational Design and Fabrication of the FlexMaps Pavilion.” SN Applied Sciences, vol. 2, no. 9, 1505, Springer Nature, 2020, doi:10.1007/s42452-020-03305-w.","ieee":"F. Laccone et al., “A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion,” SN Applied Sciences, vol. 2, no. 9. Springer Nature, 2020."},"language":[{"iso":"eng"}],"_id":"9208","article_number":"1505"}