{"article_processing_charge":"No","month":"12","date_updated":"2021-01-12T08:21:36Z","pmid":1,"tmp":{"legal_code_url":"https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode","image":"/images/cc_by_nc_nd.png","name":"Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)","short":"CC BY-NC-ND (4.0)"},"license":"https://creativecommons.org/licenses/by-nc-nd/4.0/","type":"journal_article","file":[{"relation":"main_file","checksum":"f1e9a433e9cb0f41f7b6df6b76db1f6e","file_name":"2020_STARProtocols_Laukoter.pdf","access_level":"open_access","creator":"dernst","content_type":"application/pdf","date_updated":"2021-01-07T15:57:27Z","date_created":"2021-01-07T15:57:27Z","file_size":4031449,"file_id":"8996","success":1}],"day":"18","department":[{"_id":"SiHi"}],"abstract":[{"text":"Mosaic analysis with double markers (MADM) technology enables concomitant fluorescent cell labeling and induction of uniparental chromosome disomy (UPD) with single-cell resolution. In UPD, imprinted genes are either overexpressed 2-fold or are not expressed. Here, the MADM platform is utilized to probe imprinting phenotypes at the transcriptional level. This protocol highlights major steps for the generation and isolation of projection neurons and astrocytes with MADM-induced UPD from mouse cerebral cortex for downstream single-cell and low-input sample RNA-sequencing experiments.\r\n\r\nFor complete details on the use and execution of this protocol, please refer to Laukoter et al. (2020b).","lang":"eng"}],"publication_status":"published","date_published":"2020-12-18T00:00:00Z","issue":"3","publisher":"Elsevier","oa_version":"Published Version","oa":1,"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_created":"2020-12-30T10:17:07Z","title":"Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy","quality_controlled":"1","status":"public","external_id":{"pmid":["33377108"]},"publication_identifier":{"issn":["2666-1667"]},"has_accepted_license":"1","author":[{"id":"2D6B7A9A-F248-11E8-B48F-1D18A9856A87","full_name":"Laukoter, Susanne","last_name":"Laukoter","first_name":"Susanne"},{"orcid":"0000-0002-3183-8207","id":"4CD6AAC6-F248-11E8-B48F-1D18A9856A87","full_name":"Amberg, Nicole","first_name":"Nicole","last_name":"Amberg"},{"id":"48EA0138-F248-11E8-B48F-1D18A9856A87","full_name":"Pauler, Florian","last_name":"Pauler","first_name":"Florian"},{"orcid":"0000-0003-2279-1061","id":"37B36620-F248-11E8-B48F-1D18A9856A87","full_name":"Hippenmeyer, Simon","last_name":"Hippenmeyer","first_name":"Simon"}],"publication":"STAR Protocols","doi":"10.1016/j.xpro.2020.100215","article_number":"100215","_id":"8978","language":[{"iso":"eng"}],"citation":{"ama":"Laukoter S, Amberg N, Pauler F, Hippenmeyer S. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 2020;1(3). doi:10.1016/j.xpro.2020.100215","ista":"Laukoter S, Amberg N, Pauler F, Hippenmeyer S. 2020. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 1(3), 100215.","apa":"Laukoter, S., Amberg, N., Pauler, F., & Hippenmeyer, S. (2020). Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. Elsevier. https://doi.org/10.1016/j.xpro.2020.100215","chicago":"Laukoter, Susanne, Nicole Amberg, Florian Pauler, and Simon Hippenmeyer. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols. Elsevier, 2020. https://doi.org/10.1016/j.xpro.2020.100215.","short":"S. Laukoter, N. Amberg, F. Pauler, S. Hippenmeyer, STAR Protocols 1 (2020).","mla":"Laukoter, Susanne, et al. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols, vol. 1, no. 3, 100215, Elsevier, 2020, doi:10.1016/j.xpro.2020.100215.","ieee":"S. Laukoter, N. Amberg, F. Pauler, and S. Hippenmeyer, “Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy,” STAR Protocols, vol. 1, no. 3. Elsevier, 2020."},"article_type":"original","ec_funded":1,"year":"2020","acknowledged_ssus":[{"_id":"Bio"},{"_id":"PreCl"}],"intvolume":" 1","volume":1,"project":[{"call_identifier":"FWF","grant_number":"T0101031","_id":"268F8446-B435-11E9-9278-68D0E5697425","name":"Role of Eed in neural stem cell lineage progression"},{"name":"Molecular Mechanisms of Neural Stem Cell Lineage Progression","_id":"059F6AB4-7A3F-11EA-A408-12923DDC885E","grant_number":"F07805"},{"name":"Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain","_id":"25D92700-B435-11E9-9278-68D0E5697425","grant_number":"LS13-002"},{"grant_number":"618444","name":"Molecular Mechanisms of Cerebral Cortex Development","_id":"25D61E48-B435-11E9-9278-68D0E5697425","call_identifier":"FP7"},{"_id":"260018B0-B435-11E9-9278-68D0E5697425","name":"Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development","grant_number":"725780","call_identifier":"H2020"}],"ddc":["570"],"file_date_updated":"2021-01-07T15:57:27Z","acknowledgement":"This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Bioimaging (BIF) and Preclinical Facilities (PCF). N.A received support from the FWF Firnberg-Programm (T 1031). This work was also supported by IST Austria institutional funds; FWF SFB F78 to S.H.; NÖ Forschung und Bildung n[f+b] life science call grant (C13-002) to S.H.; the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 618444 to S.H.; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725780 LinPro) to S.H."}