{"main_file_link":[{"url":"https://arxiv.org/abs/2004.02618","open_access":"1"}],"abstract":[{"lang":"eng","text":"This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin's two-scale approach. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and by showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system."}],"department":[{"_id":"JuFi"}],"issue":"2","publication_status":"published","date_published":"2021-02-15T00:00:00Z","date_updated":"2023-08-04T11:12:16Z","month":"02","article_processing_charge":"No","day":"15","type":"journal_article","status":"public","quality_controlled":"1","title":"On a non-isothermal Cahn-Hilliard model based on a microforce balance","scopus_import":"1","publisher":"Elsevier","date_created":"2020-11-22T23:01:26Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","oa":1,"oa_version":"Preprint","language":[{"iso":"eng"}],"_id":"8792","citation":{"ieee":"A. Marveggio and G. Schimperna, “On a non-isothermal Cahn-Hilliard model based on a microforce balance,” Journal of Differential Equations, vol. 274, no. 2. Elsevier, pp. 924–970, 2021.","mla":"Marveggio, Alice, and Giulio Schimperna. “On a Non-Isothermal Cahn-Hilliard Model Based on a Microforce Balance.” Journal of Differential Equations, vol. 274, no. 2, Elsevier, 2021, pp. 924–70, doi:10.1016/j.jde.2020.10.030.","short":"A. Marveggio, G. Schimperna, Journal of Differential Equations 274 (2021) 924–970.","apa":"Marveggio, A., & Schimperna, G. (2021). On a non-isothermal Cahn-Hilliard model based on a microforce balance. Journal of Differential Equations. Elsevier. https://doi.org/10.1016/j.jde.2020.10.030","ista":"Marveggio A, Schimperna G. 2021. On a non-isothermal Cahn-Hilliard model based on a microforce balance. Journal of Differential Equations. 274(2), 924–970.","chicago":"Marveggio, Alice, and Giulio Schimperna. “On a Non-Isothermal Cahn-Hilliard Model Based on a Microforce Balance.” Journal of Differential Equations. Elsevier, 2021. https://doi.org/10.1016/j.jde.2020.10.030.","ama":"Marveggio A, Schimperna G. On a non-isothermal Cahn-Hilliard model based on a microforce balance. Journal of Differential Equations. 2021;274(2):924-970. doi:10.1016/j.jde.2020.10.030"},"article_type":"original","publication_identifier":{"issn":["00220396"],"eissn":["10902732"]},"external_id":{"arxiv":["2004.02618"],"isi":["000600845300023"]},"page":"924-970","doi":"10.1016/j.jde.2020.10.030","author":[{"full_name":"Marveggio, Alice","id":"25647992-AA84-11E9-9D75-8427E6697425","first_name":"Alice","last_name":"Marveggio"},{"full_name":"Schimperna, Giulio","first_name":"Giulio","last_name":"Schimperna"}],"publication":"Journal of Differential Equations","acknowledgement":"G. Schimperna has been partially supported by GNAMPA (Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica).","isi":1,"year":"2021","volume":274,"intvolume":" 274"}