{"oa":1,"oa_version":"Published Version","date_created":"2020-10-04T22:01:37Z","user_id":"3E5EF7F0-F248-11E8-B48F-1D18A9856A87","publisher":"Springer Nature","scopus_import":"1","title":"Edge universality for non-Hermitian random matrices","quality_controlled":"1","status":"public","file":[{"date_updated":"2020-10-05T14:53:40Z","success":1,"file_id":"8612","file_size":497032,"date_created":"2020-10-05T14:53:40Z","checksum":"611ae28d6055e1e298d53a57beb05ef4","relation":"main_file","content_type":"application/pdf","creator":"dernst","access_level":"open_access","file_name":"2020_ProbTheory_Cipolloni.pdf"}],"type":"journal_article","day":"01","month":"02","article_processing_charge":"Yes (via OA deal)","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"date_updated":"2024-03-07T15:07:53Z","date_published":"2021-02-01T00:00:00Z","publication_status":"published","department":[{"_id":"LaEr"}],"abstract":[{"lang":"eng","text":"We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy–Widom distribution at the spectral edges of the Wigner ensemble."}],"year":"2021","isi":1,"file_date_updated":"2020-10-05T14:53:40Z","ddc":["510"],"project":[{"name":"IST Austria Open Access Fund","_id":"B67AFEDC-15C9-11EA-A837-991A96BB2854"},{"name":"Random matrices, universality and disordered quantum systems","_id":"258DCDE6-B435-11E9-9278-68D0E5697425","grant_number":"338804","call_identifier":"FP7"},{"call_identifier":"H2020","name":"International IST Doctoral Program","_id":"2564DBCA-B435-11E9-9278-68D0E5697425","grant_number":"665385"}],"doi":"10.1007/s00440-020-01003-7","publication":"Probability Theory and Related Fields","author":[{"orcid":"0000-0002-4901-7992","last_name":"Cipolloni","first_name":"Giorgio","full_name":"Cipolloni, Giorgio","id":"42198EFA-F248-11E8-B48F-1D18A9856A87"},{"orcid":"0000-0001-5366-9603","last_name":"Erdös","first_name":"László","full_name":"Erdös, László","id":"4DBD5372-F248-11E8-B48F-1D18A9856A87"},{"orcid":"0000-0002-2904-1856","full_name":"Schröder, Dominik J","id":"408ED176-F248-11E8-B48F-1D18A9856A87","last_name":"Schröder","first_name":"Dominik J"}],"has_accepted_license":"1","external_id":{"arxiv":["1908.00969"],"isi":["000572724600002"]},"publication_identifier":{"eissn":["14322064"],"issn":["01788051"]},"ec_funded":1,"citation":{"short":"G. Cipolloni, L. Erdös, D.J. Schröder, Probability Theory and Related Fields (2021).","apa":"Cipolloni, G., Erdös, L., & Schröder, D. J. (2021). Edge universality for non-Hermitian random matrices. Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-020-01003-7","ista":"Cipolloni G, Erdös L, Schröder DJ. 2021. Edge universality for non-Hermitian random matrices. Probability Theory and Related Fields.","chicago":"Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Edge Universality for Non-Hermitian Random Matrices.” Probability Theory and Related Fields. Springer Nature, 2021. https://doi.org/10.1007/s00440-020-01003-7.","ama":"Cipolloni G, Erdös L, Schröder DJ. Edge universality for non-Hermitian random matrices. Probability Theory and Related Fields. 2021. doi:10.1007/s00440-020-01003-7","ieee":"G. Cipolloni, L. Erdös, and D. J. Schröder, “Edge universality for non-Hermitian random matrices,” Probability Theory and Related Fields. Springer Nature, 2021.","mla":"Cipolloni, Giorgio, et al. “Edge Universality for Non-Hermitian Random Matrices.” Probability Theory and Related Fields, Springer Nature, 2021, doi:10.1007/s00440-020-01003-7."},"article_type":"original","language":[{"iso":"eng"}],"_id":"8601"}