{"main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/1603.08838"}],"quality_controlled":"1","title":"On the marked length spectrum of generic strictly convex billiard tables","issue":"1","oa_version":"Preprint","intvolume":" 167","language":[{"iso":"eng"}],"year":"2017","publisher":"Duke University Press","article_type":"original","day":"08","date_published":"2017-12-08T00:00:00Z","_id":"8423","author":[{"last_name":"Huang","first_name":"Guan","full_name":"Huang, Guan"},{"orcid":"0000-0002-6051-2628","full_name":"Kaloshin, Vadim","first_name":"Vadim","id":"FE553552-CDE8-11E9-B324-C0EBE5697425","last_name":"Kaloshin"},{"last_name":"Sorrentino","full_name":"Sorrentino, Alfonso","first_name":"Alfonso"}],"doi":"10.1215/00127094-2017-0038","publication_status":"published","publication":"Duke Mathematical Journal","abstract":[{"lang":"eng","text":"In this paper we show that for a generic strictly convex domain, one can recover the eigendata corresponding to Aubry–Mather periodic orbits of the induced billiard map from the (maximal) marked length spectrum of the domain."}],"date_updated":"2021-01-12T08:19:11Z","volume":167,"extern":"1","type":"journal_article","publication_identifier":{"issn":["0012-7094"]},"status":"public","page":"175-209","external_id":{"arxiv":["1603.08838"]},"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"article_processing_charge":"No","citation":{"mla":"Huang, Guan, et al. “On the Marked Length Spectrum of Generic Strictly Convex Billiard Tables.” Duke Mathematical Journal, vol. 167, no. 1, Duke University Press, 2017, pp. 175–209, doi:10.1215/00127094-2017-0038.","ama":"Huang G, Kaloshin V, Sorrentino A. On the marked length spectrum of generic strictly convex billiard tables. Duke Mathematical Journal. 2017;167(1):175-209. doi:10.1215/00127094-2017-0038","short":"G. Huang, V. Kaloshin, A. Sorrentino, Duke Mathematical Journal 167 (2017) 175–209.","ieee":"G. Huang, V. Kaloshin, and A. Sorrentino, “On the marked length spectrum of generic strictly convex billiard tables,” Duke Mathematical Journal, vol. 167, no. 1. Duke University Press, pp. 175–209, 2017.","ista":"Huang G, Kaloshin V, Sorrentino A. 2017. On the marked length spectrum of generic strictly convex billiard tables. Duke Mathematical Journal. 167(1), 175–209.","chicago":"Huang, Guan, Vadim Kaloshin, and Alfonso Sorrentino. “On the Marked Length Spectrum of Generic Strictly Convex Billiard Tables.” Duke Mathematical Journal. Duke University Press, 2017. https://doi.org/10.1215/00127094-2017-0038.","apa":"Huang, G., Kaloshin, V., & Sorrentino, A. (2017). On the marked length spectrum of generic strictly convex billiard tables. Duke Mathematical Journal. Duke University Press. https://doi.org/10.1215/00127094-2017-0038"},"month":"12","date_created":"2020-09-17T10:42:42Z"}