{"volume":8,"intvolume":" 8","year":"2020","isi":1,"file_date_updated":"2020-07-14T12:48:03Z","project":[{"grant_number":"694227","_id":"25C6DC12-B435-11E9-9278-68D0E5697425","name":"Analysis of quantum many-body systems","call_identifier":"H2020"}],"ddc":["510"],"author":[{"full_name":"Deuchert, Andreas","id":"4DA65CD0-F248-11E8-B48F-1D18A9856A87","last_name":"Deuchert","first_name":"Andreas","orcid":"0000-0003-3146-6746"},{"full_name":"Mayer, Simon","id":"30C4630A-F248-11E8-B48F-1D18A9856A87","first_name":"Simon","last_name":"Mayer"},{"orcid":"0000-0002-6781-0521","last_name":"Seiringer","first_name":"Robert","id":"4AFD0470-F248-11E8-B48F-1D18A9856A87","full_name":"Seiringer, Robert"}],"has_accepted_license":"1","publication":"Forum of Mathematics, Sigma","doi":"10.1017/fms.2020.17","publication_identifier":{"eissn":["20505094"]},"external_id":{"isi":["000527342000001"],"arxiv":["1910.03372"]},"citation":{"short":"A. Deuchert, S. Mayer, R. Seiringer, Forum of Mathematics, Sigma 8 (2020).","ama":"Deuchert A, Mayer S, Seiringer R. The free energy of the two-dimensional dilute Bose gas. I. Lower bound. Forum of Mathematics, Sigma. 2020;8. doi:10.1017/fms.2020.17","apa":"Deuchert, A., Mayer, S., & Seiringer, R. (2020). The free energy of the two-dimensional dilute Bose gas. I. Lower bound. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2020.17","chicago":"Deuchert, Andreas, Simon Mayer, and Robert Seiringer. “The Free Energy of the Two-Dimensional Dilute Bose Gas. I. Lower Bound.” Forum of Mathematics, Sigma. Cambridge University Press, 2020. https://doi.org/10.1017/fms.2020.17.","ista":"Deuchert A, Mayer S, Seiringer R. 2020. The free energy of the two-dimensional dilute Bose gas. I. Lower bound. Forum of Mathematics, Sigma. 8, e20.","ieee":"A. Deuchert, S. Mayer, and R. Seiringer, “The free energy of the two-dimensional dilute Bose gas. I. Lower bound,” Forum of Mathematics, Sigma, vol. 8. Cambridge University Press, 2020.","mla":"Deuchert, Andreas, et al. “The Free Energy of the Two-Dimensional Dilute Bose Gas. I. Lower Bound.” Forum of Mathematics, Sigma, vol. 8, e20, Cambridge University Press, 2020, doi:10.1017/fms.2020.17."},"article_type":"original","ec_funded":1,"_id":"7790","article_number":"e20","language":[{"iso":"eng"}],"date_created":"2020-05-03T22:00:48Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","oa_version":"Published Version","oa":1,"scopus_import":"1","publisher":"Cambridge University Press","status":"public","related_material":{"record":[{"status":"public","relation":"earlier_version","id":"7524"}]},"quality_controlled":"1","title":"The free energy of the two-dimensional dilute Bose gas. I. Lower bound","day":"14","type":"journal_article","license":"https://creativecommons.org/licenses/by/4.0/","file":[{"file_name":"2020_ForumMath_Deuchert.pdf","creator":"dernst","access_level":"open_access","content_type":"application/pdf","relation":"main_file","checksum":"8a64da99d107686997876d7cad8cfe1e","file_size":692530,"date_created":"2020-05-04T12:02:41Z","file_id":"7797","date_updated":"2020-07-14T12:48:03Z"}],"date_updated":"2023-08-21T06:18:49Z","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"month":"03","article_processing_charge":"No","publication_status":"published","date_published":"2020-03-14T00:00:00Z","abstract":[{"text":"We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density 𝜌 and inverse temperature 𝛽 differs from the one of the noninteracting system by the correction term 𝜋𝜌𝜌𝛽𝛽 . Here, is the scattering length of the interaction potential, and 𝛽 is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in the dilute limit 𝜌 and if 𝛽𝜌 .","lang":"eng"}],"department":[{"_id":"RoSe"}]}