{"author":[{"full_name":"Goodrich, Carl Peter","id":"EB352CD2-F68A-11E9-89C5-A432E6697425","first_name":"Carl Peter","last_name":"Goodrich","orcid":"0000-0002-1307-5074"},{"last_name":"Liu","first_name":"Andrea J.","full_name":"Liu, Andrea J."},{"last_name":"Nagel","first_name":"Sidney R.","full_name":"Nagel, Sidney R."}],"month":"08","citation":{"ista":"Goodrich CP, Liu AJ, Nagel SR. 2012. Finite-size scaling at the jamming transition. Physical Review Letters. 109(9), 095704.","ieee":"C. P. Goodrich, A. J. Liu, and S. R. Nagel, “Finite-size scaling at the jamming transition,” Physical Review Letters, vol. 109, no. 9. American Physical Society, 2012.","mla":"Goodrich, Carl Peter, et al. “Finite-Size Scaling at the Jamming Transition.” Physical Review Letters, vol. 109, no. 9, 095704, American Physical Society, 2012, doi:10.1103/physrevlett.109.095704.","apa":"Goodrich, C. P., Liu, A. J., & Nagel, S. R. (2012). Finite-size scaling at the jamming transition. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.109.095704","chicago":"Goodrich, Carl Peter, Andrea J. Liu, and Sidney R. Nagel. “Finite-Size Scaling at the Jamming Transition.” Physical Review Letters. American Physical Society, 2012. https://doi.org/10.1103/physrevlett.109.095704.","ama":"Goodrich CP, Liu AJ, Nagel SR. Finite-size scaling at the jamming transition. Physical Review Letters. 2012;109(9). doi:10.1103/physrevlett.109.095704","short":"C.P. Goodrich, A.J. Liu, S.R. Nagel, Physical Review Letters 109 (2012)."},"article_number":"095704","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","abstract":[{"lang":"eng","text":"We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2."}],"publisher":"American Physical Society","date_created":"2020-04-30T11:44:12Z","title":"Finite-size scaling at the jamming transition","oa_version":"None","date_published":"2012-08-27T00:00:00Z","doi":"10.1103/physrevlett.109.095704","publication":"Physical Review Letters","type":"journal_article","article_processing_charge":"No","issue":"9","volume":109,"quality_controlled":"1","publication_status":"published","intvolume":" 109","publication_identifier":{"issn":["0031-9007","1079-7114"]},"article_type":"original","day":"27","status":"public","date_updated":"2021-01-12T08:15:27Z","language":[{"iso":"eng"}],"_id":"7776","year":"2012","extern":"1"}