{"abstract":[{"text":"Creating a selective gel that filters particles based on their interactions is a major goal of nanotechnology, with far-reaching implications from drug delivery to controlling assembly pathways. However, this is particularly difficult when the particles are larger than the gel’s characteristic mesh size because such particles cannot passively pass through the gel. Thus, filtering requires the interacting particles to transiently reorganize the gel’s internal structure. While significant advances, e.g., in DNA engineering, have enabled the design of nano-materials with programmable interactions, it is not clear what physical principles such a designer gel could exploit to achieve selective permeability. We present an equilibrium mechanism where crosslink binding dynamics are affected by interacting particles such that particle diffusion is enhanced. In addition to revealing specific design rules for manufacturing selective gels, our results have the potential to explain the origin of selective permeability in certain biological materials, including the nuclear pore complex.","lang":"eng"}],"oa_version":"Published Version","article_number":"4348","publication_status":"published","publication":"Nature Communications","quality_controlled":"1","title":"Enhanced diffusion by binding to the crosslinks of a polymer gel","main_file_link":[{"url":"https://doi.org/10.1038/s41467-018-06851-5","open_access":"1"}],"_id":"7754","doi":"10.1038/s41467-018-06851-5","author":[{"first_name":"Carl Peter","full_name":"Goodrich, Carl Peter","orcid":"0000-0002-1307-5074","last_name":"Goodrich","id":"EB352CD2-F68A-11E9-89C5-A432E6697425"},{"full_name":"Brenner, Michael P.","first_name":"Michael P.","last_name":"Brenner"},{"last_name":"Ribbeck","first_name":"Katharina","full_name":"Ribbeck, Katharina"}],"language":[{"iso":"eng"}],"publication_identifier":{"issn":["2041-1723"]},"intvolume":" 9","extern":"1","type":"journal_article","date_updated":"2021-01-12T08:15:18Z","volume":9,"oa":1,"date_published":"2018-10-19T00:00:00Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","day":"19","year":"2018","status":"public","publisher":"Springer Nature","article_type":"original","month":"10","date_created":"2020-04-30T11:38:01Z","citation":{"apa":"Goodrich, C. P., Brenner, M. P., & Ribbeck, K. (2018). Enhanced diffusion by binding to the crosslinks of a polymer gel. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-018-06851-5","chicago":"Goodrich, Carl Peter, Michael P. Brenner, and Katharina Ribbeck. “Enhanced Diffusion by Binding to the Crosslinks of a Polymer Gel.” Nature Communications. Springer Nature, 2018. https://doi.org/10.1038/s41467-018-06851-5.","ista":"Goodrich CP, Brenner MP, Ribbeck K. 2018. Enhanced diffusion by binding to the crosslinks of a polymer gel. Nature Communications. 9, 4348.","ieee":"C. P. Goodrich, M. P. Brenner, and K. Ribbeck, “Enhanced diffusion by binding to the crosslinks of a polymer gel,” Nature Communications, vol. 9. Springer Nature, 2018.","short":"C.P. Goodrich, M.P. Brenner, K. Ribbeck, Nature Communications 9 (2018).","mla":"Goodrich, Carl Peter, et al. “Enhanced Diffusion by Binding to the Crosslinks of a Polymer Gel.” Nature Communications, vol. 9, 4348, Springer Nature, 2018, doi:10.1038/s41467-018-06851-5.","ama":"Goodrich CP, Brenner MP, Ribbeck K. Enhanced diffusion by binding to the crosslinks of a polymer gel. Nature Communications. 2018;9. doi:10.1038/s41467-018-06851-5"},"article_processing_charge":"No"}