{"year":"2020","volume":39,"intvolume":" 39","ddc":["570"],"file_date_updated":"2020-07-14T12:48:00Z","isi":1,"acknowledgement":"We thank T. Stauber and T. Breiderhoff for cloning expression constructs; K. Räbel, S. Hohensee, and C. Backhaus for technical assistance; R. Jahn (MPIbpc, Göttingen) for providing the equipment required for SV purification; and A\r\nWoehler (MDC, Berlin) for assistance with SV imaging. Supported, in part, by grants from the Deutsche Forschungsgemeinschaft (JE164/9-2, SFB740 TP C5, FOR 2625 (JE164/14-1), NeuroCure Cluster of Excellence), the European Research Council Advanced Grant CYTOVOLION (ERC 294435) and the Prix Louis-Jeantet de Médecine to TJJ, and Peter and Traudl Engelhorn fellowship to ZF.","publication_identifier":{"eissn":["14602075"],"issn":["02614189"]},"external_id":{"pmid":["32118314"],"isi":["000517335000001"]},"doi":"10.15252/embj.2019103358","has_accepted_license":"1","author":[{"full_name":"Weinert, Stefanie","last_name":"Weinert","first_name":"Stefanie"},{"last_name":"Gimber","first_name":"Niclas","full_name":"Gimber, Niclas"},{"first_name":"Dorothea","last_name":"Deuschel","full_name":"Deuschel, Dorothea"},{"last_name":"Stuhlmann","first_name":"Till","full_name":"Stuhlmann, Till"},{"full_name":"Puchkov, Dmytro","first_name":"Dmytro","last_name":"Puchkov"},{"first_name":"Zohreh","last_name":"Farsi","full_name":"Farsi, Zohreh"},{"full_name":"Ludwig, Carmen F.","first_name":"Carmen F.","last_name":"Ludwig"},{"full_name":"Novarino, Gaia","id":"3E57A680-F248-11E8-B48F-1D18A9856A87","first_name":"Gaia","last_name":"Novarino","orcid":"0000-0002-7673-7178"},{"full_name":"López-Cayuqueo, Karen I.","first_name":"Karen I.","last_name":"López-Cayuqueo"},{"full_name":"Planells-Cases, Rosa","first_name":"Rosa","last_name":"Planells-Cases"},{"full_name":"Jentsch, Thomas J.","last_name":"Jentsch","first_name":"Thomas J."}],"publication":"EMBO Journal","language":[{"iso":"eng"}],"article_number":"e103358","_id":"7586","citation":{"ieee":"S. Weinert et al., “Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration,” EMBO Journal, vol. 39. EMBO Press, 2020.","mla":"Weinert, Stefanie, et al. “Uncoupling Endosomal CLC Chloride/Proton Exchange Causes Severe Neurodegeneration.” EMBO Journal, vol. 39, e103358, EMBO Press, 2020, doi:10.15252/embj.2019103358.","short":"S. Weinert, N. Gimber, D. Deuschel, T. Stuhlmann, D. Puchkov, Z. Farsi, C.F. Ludwig, G. Novarino, K.I. López-Cayuqueo, R. Planells-Cases, T.J. Jentsch, EMBO Journal 39 (2020).","apa":"Weinert, S., Gimber, N., Deuschel, D., Stuhlmann, T., Puchkov, D., Farsi, Z., … Jentsch, T. J. (2020). Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO Journal. EMBO Press. https://doi.org/10.15252/embj.2019103358","ista":"Weinert S, Gimber N, Deuschel D, Stuhlmann T, Puchkov D, Farsi Z, Ludwig CF, Novarino G, López-Cayuqueo KI, Planells-Cases R, Jentsch TJ. 2020. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO Journal. 39, e103358.","chicago":"Weinert, Stefanie, Niclas Gimber, Dorothea Deuschel, Till Stuhlmann, Dmytro Puchkov, Zohreh Farsi, Carmen F. Ludwig, et al. “Uncoupling Endosomal CLC Chloride/Proton Exchange Causes Severe Neurodegeneration.” EMBO Journal. EMBO Press, 2020. https://doi.org/10.15252/embj.2019103358.","ama":"Weinert S, Gimber N, Deuschel D, et al. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO Journal. 2020;39. doi:10.15252/embj.2019103358"},"article_type":"original","scopus_import":"1","publisher":"EMBO Press","date_created":"2020-03-15T23:00:55Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","oa":1,"oa_version":"Published Version","status":"public","title":"Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration","quality_controlled":"1","tmp":{"legal_code_url":"https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode","image":"/images/cc_by_nc_nd.png","name":"Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)","short":"CC BY-NC-ND (4.0)"},"pmid":1,"date_updated":"2023-08-18T07:07:36Z","month":"03","article_processing_charge":"No","day":"02","file":[{"content_type":"application/pdf","file_name":"2020_EMBO_Weinert.pdf","access_level":"open_access","creator":"dernst","relation":"main_file","checksum":"82750a7a93e3740decbce8474004111a","file_id":"7615","date_created":"2020-03-23T13:51:11Z","file_size":12243278,"date_updated":"2020-07-14T12:48:00Z"}],"type":"journal_article","abstract":[{"lang":"eng","text":"CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl− concentration. Disruption of endosomal ClC‐3 causes severe neurodegeneration. To assess the importance of ClC‐3 Cl−/H+ exchange, we now generate Clcn3unc/unc mice in which ClC‐3 is converted into a Cl− channel. Unlike Clcn3−/− mice, Clcn3unc/unc mice appear normal owing to compensation by ClC‐4 with which ClC‐3 forms heteromers. ClC‐4 protein levels are strongly reduced in Clcn3−/−, but not in Clcn3unc/unc mice because ClC‐3unc binds and stabilizes ClC‐4 like wild‐type ClC‐3. Although mice lacking ClC‐4 appear healthy, its absence in Clcn3unc/unc/Clcn4−/− mice entails even stronger neurodegeneration than observed in Clcn3−/− mice. A fraction of ClC‐3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3−/− mice before neurodegeneration sets in. Both, Cl−/H+‐exchange activity and the stabilizing effect on ClC‐4, are central to the biological function of ClC‐3."}],"department":[{"_id":"GaNo"}],"date_published":"2020-03-02T00:00:00Z","publication_status":"published"}