{"publication_identifier":{"issn":["2521-327X"]},"external_id":{"isi":["000469987500004"],"arxiv":["1809.09737"]},"doi":"10.22331/q-2019-06-03-150","publication":"Quantum","author":[{"full_name":"Vukics, A.","last_name":"Vukics","first_name":"A."},{"first_name":"A.","last_name":"Dombi","full_name":"Dombi, A."},{"orcid":"0000-0001-8112-028X","first_name":"Johannes M","last_name":"Fink","id":"4B591CBA-F248-11E8-B48F-1D18A9856A87","full_name":"Fink, Johannes M"},{"first_name":"P.","last_name":"Domokos","full_name":"Domokos, P."}],"has_accepted_license":"1","language":[{"iso":"eng"}],"article_number":"150","_id":"7451","article_type":"original","citation":{"mla":"Vukics, A., et al. “Finite-Size Scaling of the Photon-Blockade Breakdown Dissipative Quantum Phase Transition.” Quantum, vol. 3, 150, Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019, doi:10.22331/q-2019-06-03-150.","ieee":"A. Vukics, A. Dombi, J. M. Fink, and P. Domokos, “Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition,” Quantum, vol. 3. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019.","chicago":"Vukics, A., A. Dombi, Johannes M Fink, and P. Domokos. “Finite-Size Scaling of the Photon-Blockade Breakdown Dissipative Quantum Phase Transition.” Quantum. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019. https://doi.org/10.22331/q-2019-06-03-150.","ista":"Vukics A, Dombi A, Fink JM, Domokos P. 2019. Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum. 3, 150.","apa":"Vukics, A., Dombi, A., Fink, J. M., & Domokos, P. (2019). Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. https://doi.org/10.22331/q-2019-06-03-150","ama":"Vukics A, Dombi A, Fink JM, Domokos P. Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum. 2019;3. doi:10.22331/q-2019-06-03-150","short":"A. Vukics, A. Dombi, J.M. Fink, P. Domokos, Quantum 3 (2019)."},"year":"2019","volume":3,"intvolume":" 3","ddc":["530"],"file_date_updated":"2020-07-14T12:47:58Z","isi":1,"tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"date_updated":"2023-09-07T14:57:39Z","month":"06","article_processing_charge":"No","day":"03","file":[{"date_updated":"2020-07-14T12:47:58Z","file_size":5805248,"date_created":"2020-02-11T09:25:23Z","file_id":"7483","relation":"main_file","checksum":"26b9ba8f0155d183f1ee55295934a17f","file_name":"2019_Quantum_Vukics.pdf","creator":"dernst","access_level":"open_access","content_type":"application/pdf"}],"type":"journal_article","abstract":[{"lang":"eng","text":"We prove that the observable telegraph signal accompanying the bistability in the photon-blockade-breakdown regime of the driven and lossy Jaynes–Cummings model is the finite-size precursor of what in the thermodynamic limit is a genuine first-order phase transition. We construct a finite-size scaling of the system parameters to a well-defined thermodynamic limit, in which the system remains the same microscopic system, but the telegraph signal becomes macroscopic both in its timescale and intensity. The existence of such a finite-size scaling completes and justifies the classification of the photon-blockade-breakdown effect as a first-order dissipative quantum phase transition."}],"department":[{"_id":"JoFi"}],"publication_status":"published","date_published":"2019-06-03T00:00:00Z","publisher":"Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften","date_created":"2020-02-05T09:57:57Z","user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","oa":1,"oa_version":"Published Version","status":"public","quality_controlled":"1","title":"Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition"}