{"oa":1,"user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","external_id":{"isi":["000414113600003"]},"status":"public","project":[{"name":"Structure of the Excitation Spectrum for Many-Body Quantum Systems","call_identifier":"FWF","grant_number":"P27533_N27","_id":"25C878CE-B435-11E9-9278-68D0E5697425"}],"page":"662 - 688","month":"11","date_created":"2018-12-11T11:48:15Z","citation":{"ieee":"P. Nam and M. M. Napiórkowski, “A note on the validity of Bogoliubov correction to mean field dynamics,” Journal de Mathématiques Pures et Appliquées, vol. 108, no. 5. Elsevier, pp. 662–688, 2017.","short":"P. Nam, M.M. Napiórkowski, Journal de Mathématiques Pures et Appliquées 108 (2017) 662–688.","ama":"Nam P, Napiórkowski MM. A note on the validity of Bogoliubov correction to mean field dynamics. Journal de Mathématiques Pures et Appliquées. 2017;108(5):662-688. doi:10.1016/j.matpur.2017.05.013","mla":"Nam, Phan, and Marcin M. Napiórkowski. “A Note on the Validity of Bogoliubov Correction to Mean Field Dynamics.” Journal de Mathématiques Pures et Appliquées, vol. 108, no. 5, Elsevier, 2017, pp. 662–88, doi:10.1016/j.matpur.2017.05.013.","apa":"Nam, P., & Napiórkowski, M. M. (2017). A note on the validity of Bogoliubov correction to mean field dynamics. Journal de Mathématiques Pures et Appliquées. Elsevier. https://doi.org/10.1016/j.matpur.2017.05.013","ista":"Nam P, Napiórkowski MM. 2017. A note on the validity of Bogoliubov correction to mean field dynamics. Journal de Mathématiques Pures et Appliquées. 108(5), 662–688.","chicago":"Nam, Phan, and Marcin M Napiórkowski. “A Note on the Validity of Bogoliubov Correction to Mean Field Dynamics.” Journal de Mathématiques Pures et Appliquées. Elsevier, 2017. https://doi.org/10.1016/j.matpur.2017.05.013."},"department":[{"_id":"RoSe"}],"article_processing_charge":"No","abstract":[{"text":"We study the norm approximation to the Schrödinger dynamics of N bosons in with an interaction potential of the form . Assuming that in the initial state the particles outside of the condensate form a quasi-free state with finite kinetic energy, we show that in the large N limit, the fluctuations around the condensate can be effectively described using Bogoliubov approximation for all . The range of β is expected to be optimal for this large class of initial states.","lang":"eng"}],"publication_status":"published","publication":"Journal de Mathématiques Pures et Appliquées","_id":"739","author":[{"id":"404092F4-F248-11E8-B48F-1D18A9856A87","last_name":"Nam","full_name":"Nam, Phan","first_name":"Phan"},{"first_name":"Marcin M","full_name":"Napiórkowski, Marcin M","id":"4197AD04-F248-11E8-B48F-1D18A9856A87","last_name":"Napiórkowski"}],"doi":"10.1016/j.matpur.2017.05.013","publication_identifier":{"issn":["00217824"]},"isi":1,"type":"journal_article","date_updated":"2023-09-27T12:52:07Z","volume":108,"date_published":"2017-11-01T00:00:00Z","day":"01","year":"2017","publisher":"Elsevier","oa_version":"Submitted Version","issue":"5","quality_controlled":"1","scopus_import":"1","title":"A note on the validity of Bogoliubov correction to mean field dynamics","main_file_link":[{"url":"https://arxiv.org/abs/1604.05240","open_access":"1"}],"language":[{"iso":"eng"}],"intvolume":" 108","publist_id":"6928"}