{"isi":1,"year":"2020","volume":37,"intvolume":" 37","_id":"7388","language":[{"iso":"eng"}],"article_type":"original","citation":{"ieee":"M. Gerencser, “Nondivergence form quasilinear heat equations driven by space-time white noise,” Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 37, no. 3. Elsevier, pp. 663–682, 2020.","mla":"Gerencser, Mate. “Nondivergence Form Quasilinear Heat Equations Driven by Space-Time White Noise.” Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, vol. 37, no. 3, Elsevier, 2020, pp. 663–82, doi:10.1016/j.anihpc.2020.01.003.","short":"M. Gerencser, Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire 37 (2020) 663–682.","ama":"Gerencser M. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 2020;37(3):663-682. doi:10.1016/j.anihpc.2020.01.003","ista":"Gerencser M. 2020. Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 37(3), 663–682.","apa":"Gerencser, M. (2020). Nondivergence form quasilinear heat equations driven by space-time white noise. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire. Elsevier. https://doi.org/10.1016/j.anihpc.2020.01.003","chicago":"Gerencser, Mate. “Nondivergence Form Quasilinear Heat Equations Driven by Space-Time White Noise.” Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire. Elsevier, 2020. https://doi.org/10.1016/j.anihpc.2020.01.003."},"publication_identifier":{"issn":["0294-1449"]},"external_id":{"isi":["000531049800007"],"arxiv":["1902.07635"]},"author":[{"id":"44ECEDF2-F248-11E8-B48F-1D18A9856A87","full_name":"Gerencser, Mate","first_name":"Mate","last_name":"Gerencser"}],"publication":"Annales de l'Institut Henri Poincaré C, Analyse non linéaire","page":"663-682","doi":"10.1016/j.anihpc.2020.01.003","status":"public","title":"Nondivergence form quasilinear heat equations driven by space-time white noise","quality_controlled":"1","scopus_import":"1","publisher":"Elsevier","date_created":"2020-01-29T09:39:41Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","oa_version":"Preprint","oa":1,"abstract":[{"lang":"eng","text":"We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in 1 + 1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of linear identities for the renormalisation constants."}],"main_file_link":[{"url":"https://arxiv.org/abs/1902.07635","open_access":"1"}],"department":[{"_id":"JaMa"}],"issue":"3","date_published":"2020-05-01T00:00:00Z","publication_status":"published","date_updated":"2023-08-17T14:35:46Z","article_processing_charge":"No","month":"05","day":"01","type":"journal_article"}