{"intvolume":" 11750","volume":11750,"year":"2019","isi":1,"project":[{"_id":"25832EC2-B435-11E9-9278-68D0E5697425","name":"Rigorous Systems Engineering","grant_number":"S 11407_N23","call_identifier":"FWF"},{"call_identifier":"FWF","_id":"25863FF4-B435-11E9-9278-68D0E5697425","name":"Game Theory","grant_number":"S11407"},{"grant_number":"Z211","name":"The Wittgenstein Prize","_id":"25F42A32-B435-11E9-9278-68D0E5697425","call_identifier":"FWF"}],"publication":"17th International Conference on Formal Modeling and Analysis of Timed Systems","author":[{"first_name":"Hui","last_name":"Kong","full_name":"Kong, Hui","id":"3BDE25AA-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-3066-6941"},{"full_name":"Bartocci, Ezio","last_name":"Bartocci","first_name":"Ezio"},{"first_name":"Yu","last_name":"Jiang","full_name":"Jiang, Yu"},{"orcid":"0000−0002−2985−7724","first_name":"Thomas A","last_name":"Henzinger","id":"40876CD8-F248-11E8-B48F-1D18A9856A87","full_name":"Henzinger, Thomas A"}],"page":"123-141","doi":"10.1007/978-3-030-29662-9_8","external_id":{"arxiv":["1907.11514"],"isi":["000611677700008"]},"publication_identifier":{"issn":["0302-9743"],"eissn":["1611-3349"],"isbn":["978-3-0302-9661-2"]},"citation":{"ieee":"H. Kong, E. Bartocci, Y. Jiang, and T. A. Henzinger, “Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty,” in 17th International Conference on Formal Modeling and Analysis of Timed Systems, Amsterdam, The Netherlands, 2019, vol. 11750, pp. 123–141.","mla":"Kong, Hui, et al. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” 17th International Conference on Formal Modeling and Analysis of Timed Systems, vol. 11750, Springer Nature, 2019, pp. 123–41, doi:10.1007/978-3-030-29662-9_8.","short":"H. Kong, E. Bartocci, Y. Jiang, T.A. Henzinger, in:, 17th International Conference on Formal Modeling and Analysis of Timed Systems, Springer Nature, 2019, pp. 123–141.","ista":"Kong H, Bartocci E, Jiang Y, Henzinger TA. 2019. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. 17th International Conference on Formal Modeling and Analysis of Timed Systems. FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS, vol. 11750, 123–141.","apa":"Kong, H., Bartocci, E., Jiang, Y., & Henzinger, T. A. (2019). Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In 17th International Conference on Formal Modeling and Analysis of Timed Systems (Vol. 11750, pp. 123–141). Amsterdam, The Netherlands: Springer Nature. https://doi.org/10.1007/978-3-030-29662-9_8","chicago":"Kong, Hui, Ezio Bartocci, Yu Jiang, and Thomas A Henzinger. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” In 17th International Conference on Formal Modeling and Analysis of Timed Systems, 11750:123–41. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29662-9_8.","ama":"Kong H, Bartocci E, Jiang Y, Henzinger TA. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In: 17th International Conference on Formal Modeling and Analysis of Timed Systems. Vol 11750. Springer Nature; 2019:123-141. doi:10.1007/978-3-030-29662-9_8"},"conference":{"location":"Amsterdam, The Netherlands","end_date":"2019-08-29","name":"FORMATS: Formal Modeling and Analysis of Timed Systems","start_date":"2019-08-27"},"_id":"7231","language":[{"iso":"eng"}],"oa_version":"Preprint","oa":1,"user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","date_created":"2020-01-05T23:00:47Z","publisher":"Springer Nature","scopus_import":"1","title":"Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty","quality_controlled":"1","status":"public","alternative_title":["LNCS"],"type":"conference","day":"13","article_processing_charge":"No","month":"08","date_updated":"2023-09-06T14:55:15Z","publication_status":"published","date_published":"2019-08-13T00:00:00Z","department":[{"_id":"ToHe"}],"abstract":[{"lang":"eng","text":"Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between trajectories, producing an overapproximation that is time independent. However, the existing approach for PBT is not efficient due to the application of interval methods for enclosure-box computation, and it can only deal with continuous dynamical systems without uncertainty. In this paper, we extend the approach with the ability to handle both continuous and hybrid dynamical systems with uncertainty that can reside in parameters and/or noise. We also improve the efficiency of the method significantly, by avoiding the use of interval-based methods for the enclosure-box computation without loosing soundness. We have developed a C++ prototype implementing the proposed approach and we evaluate it on several benchmarks. The experiments show that our approach is more efficient and precise than other methods in the literature."}],"main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/1907.11514"}]}