{"citation":{"ieee":"Y. Wang, M. Nagarajan, C. Uhler, and G. Shivashankar, “Orientation and repositioning of chromosomes correlate with cell geometry dependent gene expression,” Molecular Biology of the Cell, vol. 28, no. 14. American Society for Cell Biology, pp. 1997–2009, 2017.","mla":"Wang, Yejun, et al. “Orientation and Repositioning of Chromosomes Correlate with Cell Geometry Dependent Gene Expression.” Molecular Biology of the Cell, vol. 28, no. 14, American Society for Cell Biology, 2017, pp. 1997–2009, doi:10.1091/mbc.E16-12-0825.","short":"Y. Wang, M. Nagarajan, C. Uhler, G. Shivashankar, Molecular Biology of the Cell 28 (2017) 1997–2009.","ista":"Wang Y, Nagarajan M, Uhler C, Shivashankar G. 2017. Orientation and repositioning of chromosomes correlate with cell geometry dependent gene expression. Molecular Biology of the Cell. 28(14), 1997–2009.","apa":"Wang, Y., Nagarajan, M., Uhler, C., & Shivashankar, G. (2017). Orientation and repositioning of chromosomes correlate with cell geometry dependent gene expression. Molecular Biology of the Cell. American Society for Cell Biology. https://doi.org/10.1091/mbc.E16-12-0825","chicago":"Wang, Yejun, Mallika Nagarajan, Caroline Uhler, and Gv Shivashankar. “Orientation and Repositioning of Chromosomes Correlate with Cell Geometry Dependent Gene Expression.” Molecular Biology of the Cell. American Society for Cell Biology, 2017. https://doi.org/10.1091/mbc.E16-12-0825.","ama":"Wang Y, Nagarajan M, Uhler C, Shivashankar G. Orientation and repositioning of chromosomes correlate with cell geometry dependent gene expression. Molecular Biology of the Cell. 2017;28(14):1997-2009. doi:10.1091/mbc.E16-12-0825"},"pubrep_id":"892","language":[{"iso":"eng"}],"_id":"698","doi":"10.1091/mbc.E16-12-0825","page":"1997 - 2009","publication":"Molecular Biology of the Cell","author":[{"full_name":"Wang, Yejun","first_name":"Yejun","last_name":"Wang"},{"full_name":"Nagarajan, Mallika","first_name":"Mallika","last_name":"Nagarajan"},{"id":"49ADD78E-F248-11E8-B48F-1D18A9856A87","full_name":"Uhler, Caroline","first_name":"Caroline","last_name":"Uhler","orcid":"0000-0002-7008-0216"},{"full_name":"Shivashankar, Gv","last_name":"Shivashankar","first_name":"Gv"}],"has_accepted_license":"1","publication_identifier":{"issn":["10591524"]},"file_date_updated":"2020-07-14T12:47:46Z","ddc":["519"],"project":[{"grant_number":"Y 903-N35","name":"Gaussian Graphical Models: Theory and Applications","_id":"2530CA10-B435-11E9-9278-68D0E5697425","call_identifier":"FWF"}],"intvolume":" 28","publist_id":"7001","volume":28,"year":"2017","date_published":"2017-07-07T00:00:00Z","publication_status":"published","issue":"14","department":[{"_id":"CaUh"}],"abstract":[{"lang":"eng","text":"Extracellular matrix signals from the microenvironment regulate gene expression patterns and cell behavior. Using a combination of experiments and geometric models, we demonstrate correlations between cell geometry, three-dimensional (3D) organization of chromosome territories, and gene expression. Fluorescence in situ hybridization experiments showed that micropatterned fibroblasts cultured on anisotropic versus isotropic substrates resulted in repositioning of specific chromosomes, which contained genes that were differentially regulated by cell geometries. Experiments combined with ellipsoid packing models revealed that the mechanosensitivity of chromosomes was correlated with their orientation in the nucleus. Transcription inhibition experiments suggested that the intermingling degree was more sensitive to global changes in transcription than to chromosome radial positioning and its orientations. These results suggested that cell geometry modulated 3D chromosome arrangement, and their neighborhoods correlated with gene expression patterns in a predictable manner. This is central to understanding geometric control of genetic programs involved in cellular homeostasis and the associated diseases. "}],"file":[{"date_updated":"2020-07-14T12:47:46Z","file_id":"4844","file_size":1086097,"date_created":"2018-12-12T10:10:53Z","relation":"main_file","checksum":"de01dac9e30970cfa6ae902480a4e04d","content_type":"application/pdf","file_name":"IST-2017-892-v1+1_Mol._Biol._Cell-2017-Wang-1997-2009.pdf","creator":"system","access_level":"open_access"}],"license":"https://creativecommons.org/licenses/by-nc-sa/4.0/","type":"journal_article","day":"07","month":"07","tmp":{"legal_code_url":"https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode","short":"CC BY-NC-SA (4.0)","image":"/images/cc_by_nc_sa.png","name":"Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"},"date_updated":"2021-01-12T08:11:17Z","title":"Orientation and repositioning of chromosomes correlate with cell geometry dependent gene expression","quality_controlled":"1","status":"public","oa":1,"oa_version":"Published Version","date_created":"2018-12-11T11:47:59Z","user_id":"3E5EF7F0-F248-11E8-B48F-1D18A9856A87","publisher":"American Society for Cell Biology","scopus_import":1}