{"title":"Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow","quality_controlled":"1","status":"public","oa_version":"Published Version","oa":1,"date_created":"2019-09-07T14:35:40Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","publisher":"Wiley","scopus_import":"1","date_published":"2019-11-01T00:00:00Z","publication_status":"published","issue":"3","department":[{"_id":"NiBa"}],"abstract":[{"text":"Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (i) the two‐way interaction between introgression and the evolution of reproductive systems, and (ii) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.","lang":"eng"}],"license":"https://creativecommons.org/licenses/by/4.0/","type":"journal_article","file":[{"file_name":"2019_NewPhytologist_Pickup.pdf","creator":"dernst","access_level":"open_access","content_type":"application/pdf","relation":"main_file","checksum":"21e4c95599bbcaf7c483b89954658672","date_created":"2019-11-13T08:15:05Z","file_size":1511958,"file_id":"7011","date_updated":"2020-07-14T12:47:42Z"}],"day":"01","article_processing_charge":"No","month":"11","date_updated":"2023-10-18T08:47:08Z","pmid":1,"tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"file_date_updated":"2020-07-14T12:47:42Z","project":[{"_id":"25B36484-B435-11E9-9278-68D0E5697425","name":"Mating system and the evolutionary dynamics of hybrid zones","grant_number":"329960","call_identifier":"FP7"},{"call_identifier":"FWF","name":"Sex chromosomes and species barriers","_id":"2662AADE-B435-11E9-9278-68D0E5697425","grant_number":"M02463"}],"ddc":["570"],"intvolume":" 224","volume":224,"year":"2019","citation":{"apa":"Pickup, M., Barton, N. H., Brandvain, Y., Fraisse, C., Yakimowski, S., Dixit, T., … Field, D. (2019). Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist. Wiley. https://doi.org/10.1111/nph.16180","chicago":"Pickup, Melinda, Nicholas H Barton, Yaniv Brandvain, Christelle Fraisse, Sarah Yakimowski, Tanmay Dixit, Christian Lexer, Eva Cereghetti, and David Field. “Mating System Variation in Hybrid Zones: Facilitation, Barriers and Asymmetries to Gene Flow.” New Phytologist. Wiley, 2019. https://doi.org/10.1111/nph.16180.","ista":"Pickup M, Barton NH, Brandvain Y, Fraisse C, Yakimowski S, Dixit T, Lexer C, Cereghetti E, Field D. 2019. Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist. 224(3), 1035–1047.","ama":"Pickup M, Barton NH, Brandvain Y, et al. Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist. 2019;224(3):1035-1047. doi:10.1111/nph.16180","short":"M. Pickup, N.H. Barton, Y. Brandvain, C. Fraisse, S. Yakimowski, T. Dixit, C. Lexer, E. Cereghetti, D. Field, New Phytologist 224 (2019) 1035–1047.","mla":"Pickup, Melinda, et al. “Mating System Variation in Hybrid Zones: Facilitation, Barriers and Asymmetries to Gene Flow.” New Phytologist, vol. 224, no. 3, Wiley, 2019, pp. 1035–47, doi:10.1111/nph.16180.","ieee":"M. Pickup et al., “Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow,” New Phytologist, vol. 224, no. 3. Wiley, pp. 1035–1047, 2019."},"article_type":"original","ec_funded":1,"_id":"6856","language":[{"iso":"eng"}],"author":[{"orcid":"0000-0001-6118-0541","first_name":"Melinda","last_name":"Pickup","full_name":"Pickup, Melinda","id":"2C78037E-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Barton, Nicholas H","id":"4880FE40-F248-11E8-B48F-1D18A9856A87","last_name":"Barton","first_name":"Nicholas H","orcid":"0000-0002-8548-5240"},{"first_name":"Yaniv","last_name":"Brandvain","full_name":"Brandvain, Yaniv"},{"orcid":"0000-0001-8441-5075","last_name":"Fraisse","first_name":"Christelle","id":"32DF5794-F248-11E8-B48F-1D18A9856A87","full_name":"Fraisse, Christelle"},{"first_name":"Sarah","last_name":"Yakimowski","full_name":"Yakimowski, Sarah"},{"full_name":"Dixit, Tanmay","first_name":"Tanmay","last_name":"Dixit"},{"full_name":"Lexer, Christian","last_name":"Lexer","first_name":"Christian"},{"id":"71AA91B4-05ED-11EA-8BEB-F5833E63BD63","full_name":"Cereghetti, Eva","first_name":"Eva","last_name":"Cereghetti"},{"orcid":"0000-0002-4014-8478","first_name":"David","last_name":"Field","id":"419049E2-F248-11E8-B48F-1D18A9856A87","full_name":"Field, David"}],"has_accepted_license":"1","publication":"New Phytologist","doi":"10.1111/nph.16180","page":"1035-1047","external_id":{"pmid":["31505037"]},"publication_identifier":{"issn":["0028-646X"],"eissn":["1469-8137"]}}