{"has_accepted_license":"1","ddc":["000","510"],"volume":129,"publication":"35th International Symposium on Computational Geometry","publication_identifier":{"isbn":["9783959771047"],"issn":["1868-8969"]},"oa":1,"year":"2019","quality_controlled":"1","tmp":{"legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png","short":"CC BY (4.0)","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)"},"publication_status":"published","scopus_import":1,"citation":{"chicago":"Fulek, Radoslav, Bernd Gärtner, Andrey Kupavskii, Pavel Valtr, and Uli Wagner. “The Crossing Tverberg Theorem.” In 35th International Symposium on Computational Geometry, 129:38:1-38:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.SOCG.2019.38.","apa":"Fulek, R., Gärtner, B., Kupavskii, A., Valtr, P., & Wagner, U. (2019). The crossing Tverberg theorem. In 35th International Symposium on Computational Geometry (Vol. 129, p. 38:1-38:13). Portland, OR, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.SOCG.2019.38","mla":"Fulek, Radoslav, et al. “The Crossing Tverberg Theorem.” 35th International Symposium on Computational Geometry, vol. 129, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 38:1-38:13, doi:10.4230/LIPICS.SOCG.2019.38.","short":"R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, U. Wagner, in:, 35th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 38:1-38:13.","ista":"Fulek R, Gärtner B, Kupavskii A, Valtr P, Wagner U. 2019. The crossing Tverberg theorem. 35th International Symposium on Computational Geometry. SoCG 2019: Symposium on Computational Geometry, LIPIcs, vol. 129, 38:1-38:13.","ieee":"R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner, “The crossing Tverberg theorem,” in 35th International Symposium on Computational Geometry, Portland, OR, United States, 2019, vol. 129, p. 38:1-38:13.","ama":"Fulek R, Gärtner B, Kupavskii A, Valtr P, Wagner U. The crossing Tverberg theorem. In: 35th International Symposium on Computational Geometry. Vol 129. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019:38:1-38:13. doi:10.4230/LIPICS.SOCG.2019.38"},"publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","related_material":{"record":[{"status":"public","relation":"later_version","id":"13974"}]},"author":[{"full_name":"Fulek, Radoslav","last_name":"Fulek","id":"39F3FFE4-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0001-8485-1774","first_name":"Radoslav"},{"full_name":"Gärtner, Bernd","first_name":"Bernd","last_name":"Gärtner"},{"first_name":"Andrey","last_name":"Kupavskii","full_name":"Kupavskii, Andrey"},{"full_name":"Valtr, Pavel","first_name":"Pavel","last_name":"Valtr"},{"first_name":"Uli","last_name":"Wagner","id":"36690CA2-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-1494-0568","full_name":"Wagner, Uli"}],"type":"conference","conference":{"start_date":"2019-06-18","location":"Portland, OR, United States","end_date":"2019-06-21","name":"SoCG 2019: Symposium on Computational Geometry"},"department":[{"_id":"UlWa"}],"doi":"10.4230/LIPICS.SOCG.2019.38","language":[{"iso":"eng"}],"date_created":"2019-07-17T10:35:04Z","status":"public","page":"38:1-38:13","day":"01","date_updated":"2023-12-13T12:03:35Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_published":"2019-06-01T00:00:00Z","title":"The crossing Tverberg theorem","external_id":{"arxiv":["1812.04911"]},"month":"06","abstract":[{"text":"The Tverberg theorem is one of the cornerstones of discrete geometry. It states that, given a set X of at least (d+1)(r-1)+1 points in R^d, one can find a partition X=X_1 cup ... cup X_r of X, such that the convex hulls of the X_i, i=1,...,r, all share a common point. In this paper, we prove a strengthening of this theorem that guarantees a partition which, in addition to the above, has the property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections. Possible generalizations and algorithmic aspects are also discussed. As a concrete application, we show that any n points in the plane in general position span floor[n/3] vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise nonempty intersections; this number is clearly best possible. A previous result of Alvarez-Rebollar et al. guarantees floor[n/6] pairwise crossing triangles. Our result generalizes to a result about simplices in R^d,d >=2.","lang":"eng"}],"_id":"6647","alternative_title":["LIPIcs"],"oa_version":"Published Version","intvolume":" 129","file_date_updated":"2020-07-14T12:47:35Z","project":[{"_id":"261FA626-B435-11E9-9278-68D0E5697425","name":"Eliminating intersections in drawings of graphs","call_identifier":"FWF","grant_number":"M02281"}],"file":[{"creator":"dernst","file_id":"6667","checksum":"d6d017f8b41291b94d102294fa96ae9c","date_updated":"2020-07-14T12:47:35Z","file_size":559837,"file_name":"2019_LIPICS_Fulek.pdf","relation":"main_file","access_level":"open_access","content_type":"application/pdf","date_created":"2019-07-24T06:54:52Z"}]}