{"oa_version":"Preprint","scopus_import":"1","month":"03","publication_status":"published","date_created":"2018-12-11T11:44:26Z","date_updated":"2023-08-24T14:30:16Z","issue":"6","language":[{"iso":"eng"}],"year":"2019","volume":266,"page":"3732-3763","department":[{"_id":"JaMa"}],"publication":"Journal of Differential Equations","author":[{"first_name":"Konstantinos","full_name":"Dareiotis, Konstantinos","last_name":"Dareiotis"},{"last_name":"Gerencser","full_name":"Gerencser, Mate","first_name":"Mate","id":"44ECEDF2-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Gess, Benjamin","last_name":"Gess","first_name":"Benjamin"}],"status":"public","_id":"65","quality_controlled":"1","article_type":"original","publist_id":"7989","article_processing_charge":"No","citation":{"mla":"Dareiotis, Konstantinos, et al. “Entropy Solutions for Stochastic Porous Media Equations.” Journal of Differential Equations, vol. 266, no. 6, Elsevier, 2019, pp. 3732–63, doi:10.1016/j.jde.2018.09.012.","ista":"Dareiotis K, Gerencser M, Gess B. 2019. Entropy solutions for stochastic porous media equations. Journal of Differential Equations. 266(6), 3732–3763.","short":"K. Dareiotis, M. Gerencser, B. Gess, Journal of Differential Equations 266 (2019) 3732–3763.","ama":"Dareiotis K, Gerencser M, Gess B. Entropy solutions for stochastic porous media equations. Journal of Differential Equations. 2019;266(6):3732-3763. doi:10.1016/j.jde.2018.09.012","ieee":"K. Dareiotis, M. Gerencser, and B. Gess, “Entropy solutions for stochastic porous media equations,” Journal of Differential Equations, vol. 266, no. 6. Elsevier, pp. 3732–3763, 2019.","chicago":"Dareiotis, Konstantinos, Mate Gerencser, and Benjamin Gess. “Entropy Solutions for Stochastic Porous Media Equations.” Journal of Differential Equations. Elsevier, 2019. https://doi.org/10.1016/j.jde.2018.09.012.","apa":"Dareiotis, K., Gerencser, M., & Gess, B. (2019). Entropy solutions for stochastic porous media equations. Journal of Differential Equations. Elsevier. https://doi.org/10.1016/j.jde.2018.09.012"},"doi":"10.1016/j.jde.2018.09.012","external_id":{"arxiv":["1803.06953"],"isi":["000456332500026"]},"date_published":"2019-03-05T00:00:00Z","intvolume":" 266","title":"Entropy solutions for stochastic porous media equations","oa":1,"day":"5","main_file_link":[{"open_access":"1","url":"http://arxiv.org/abs/1803.06953"}],"user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","type":"journal_article","publisher":"Elsevier","isi":1,"abstract":[{"text":"We provide an entropy formulation for porous medium-type equations with a stochastic, non-linear, spatially inhomogeneous forcing. Well-posedness and L1-contraction is obtained in the class of entropy solutions. Our scope allows for porous medium operators Δ(|u|m−1u) for all m∈(1,∞), and Hölder continuous diffusion nonlinearity with exponent 1/2.","lang":"eng"}]}