{"status":"public","scopus_import":"1","issue":"6","oa_version":"Preprint","date_published":"2019-03-05T00:00:00Z","citation":{"short":"K. Dareiotis, M. Gerencser, B. Gess, Journal of Differential Equations 266 (2019) 3732–3763.","mla":"Dareiotis, Konstantinos, et al. “Entropy Solutions for Stochastic Porous Media Equations.” Journal of Differential Equations, vol. 266, no. 6, Elsevier, 2019, pp. 3732–63, doi:10.1016/j.jde.2018.09.012.","chicago":"Dareiotis, Konstantinos, Mate Gerencser, and Benjamin Gess. “Entropy Solutions for Stochastic Porous Media Equations.” Journal of Differential Equations. Elsevier, 2019. https://doi.org/10.1016/j.jde.2018.09.012.","ieee":"K. Dareiotis, M. Gerencser, and B. Gess, “Entropy solutions for stochastic porous media equations,” Journal of Differential Equations, vol. 266, no. 6. Elsevier, pp. 3732–3763, 2019.","ama":"Dareiotis K, Gerencser M, Gess B. Entropy solutions for stochastic porous media equations. Journal of Differential Equations. 2019;266(6):3732-3763. doi:10.1016/j.jde.2018.09.012","ista":"Dareiotis K, Gerencser M, Gess B. 2019. Entropy solutions for stochastic porous media equations. Journal of Differential Equations. 266(6), 3732–3763.","apa":"Dareiotis, K., Gerencser, M., & Gess, B. (2019). Entropy solutions for stochastic porous media equations. Journal of Differential Equations. Elsevier. https://doi.org/10.1016/j.jde.2018.09.012"},"volume":266,"type":"journal_article","publication":"Journal of Differential Equations","year":"2019","author":[{"first_name":"Konstantinos","last_name":"Dareiotis","full_name":"Dareiotis, Konstantinos"},{"first_name":"Mate","id":"44ECEDF2-F248-11E8-B48F-1D18A9856A87","full_name":"Gerencser, Mate","last_name":"Gerencser"},{"first_name":"Benjamin","last_name":"Gess","full_name":"Gess, Benjamin"}],"publisher":"Elsevier","intvolume":" 266","date_created":"2018-12-11T11:44:26Z","oa":1,"abstract":[{"lang":"eng","text":"We provide an entropy formulation for porous medium-type equations with a stochastic, non-linear, spatially inhomogeneous forcing. Well-posedness and L1-contraction is obtained in the class of entropy solutions. Our scope allows for porous medium operators Δ(|u|m−1u) for all m∈(1,∞), and Hölder continuous diffusion nonlinearity with exponent 1/2."}],"doi":"10.1016/j.jde.2018.09.012","article_type":"original","title":"Entropy solutions for stochastic porous media equations","department":[{"_id":"JaMa"}],"article_processing_charge":"No","external_id":{"arxiv":["1803.06953"],"isi":["000456332500026"]},"publication_status":"published","date_updated":"2023-08-24T14:30:16Z","main_file_link":[{"url":"http://arxiv.org/abs/1803.06953","open_access":"1"}],"publist_id":"7989","day":"5","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","quality_controlled":"1","month":"03","page":"3732-3763","_id":"65","language":[{"iso":"eng"}],"isi":1}