{"issue":"2","department":[{"_id":"LaEr"}],"article_processing_charge":"No","type":"journal_article","_id":"6240","status":"public","publication_status":"published","quality_controlled":"1","volume":55,"related_material":{"record":[{"status":"public","id":"149","relation":"dissertation_contains"}]},"citation":{"short":"J. Alt, L. Erdös, T.H. Krüger, Y. Nemish, Annales de l’institut Henri Poincare 55 (2019) 661–696.","ama":"Alt J, Erdös L, Krüger TH, Nemish Y. Location of the spectrum of Kronecker random matrices. Annales de l’institut Henri Poincare. 2019;55(2):661-696. doi:10.1214/18-AIHP894","chicago":"Alt, Johannes, László Erdös, Torben H Krüger, and Yuriy Nemish. “Location of the Spectrum of Kronecker Random Matrices.” Annales de l’institut Henri Poincare. Institut Henri Poincaré, 2019. https://doi.org/10.1214/18-AIHP894.","apa":"Alt, J., Erdös, L., Krüger, T. H., & Nemish, Y. (2019). Location of the spectrum of Kronecker random matrices. Annales de l’institut Henri Poincare. Institut Henri Poincaré. https://doi.org/10.1214/18-AIHP894","mla":"Alt, Johannes, et al. “Location of the Spectrum of Kronecker Random Matrices.” Annales de l’institut Henri Poincare, vol. 55, no. 2, Institut Henri Poincaré, 2019, pp. 661–96, doi:10.1214/18-AIHP894.","ista":"Alt J, Erdös L, Krüger TH, Nemish Y. 2019. Location of the spectrum of Kronecker random matrices. Annales de l’institut Henri Poincare. 55(2), 661–696.","ieee":"J. Alt, L. Erdös, T. H. Krüger, and Y. Nemish, “Location of the spectrum of Kronecker random matrices,” Annales de l’institut Henri Poincare, vol. 55, no. 2. Institut Henri Poincaré, pp. 661–696, 2019."},"month":"05","author":[{"first_name":"Johannes","last_name":"Alt","id":"36D3D8B6-F248-11E8-B48F-1D18A9856A87","full_name":"Alt, Johannes"},{"full_name":"Erdös, László","orcid":"0000-0001-5366-9603","id":"4DBD5372-F248-11E8-B48F-1D18A9856A87","last_name":"Erdös","first_name":"László"},{"full_name":"Krüger, Torben H","orcid":"0000-0002-4821-3297","last_name":"Krüger","first_name":"Torben H","id":"3020C786-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Nemish, Yuriy","orcid":"0000-0002-7327-856X","id":"4D902E6A-F248-11E8-B48F-1D18A9856A87","last_name":"Nemish","first_name":"Yuriy"}],"date_published":"2019-05-01T00:00:00Z","title":"Location of the spectrum of Kronecker random matrices","project":[{"_id":"258DCDE6-B435-11E9-9278-68D0E5697425","name":"Random matrices, universality and disordered quantum systems","call_identifier":"FP7","grant_number":"338804"}],"scopus_import":"1","date_created":"2019-04-08T14:05:04Z","publication":"Annales de l'institut Henri Poincare","ec_funded":1,"doi":"10.1214/18-AIHP894","year":"2019","language":[{"iso":"eng"}],"day":"01","date_updated":"2023-10-17T12:20:20Z","publication_identifier":{"issn":["0246-0203"]},"intvolume":" 55","main_file_link":[{"url":"https://arxiv.org/abs/1706.08343","open_access":"1"}],"abstract":[{"text":"For a general class of large non-Hermitian random block matrices X we prove that there are no eigenvalues away from a deterministic set with very high probability. This set is obtained from the Dyson equation of the Hermitization of X as the self-consistent approximation of the pseudospectrum. We demonstrate that the analysis of the matrix Dyson equation from (Probab. Theory Related Fields (2018)) offers a unified treatment of many structured matrix ensembles.","lang":"eng"}],"publisher":"Institut Henri Poincaré","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","external_id":{"isi":["000467793600003"],"arxiv":["1706.08343"]},"oa":1,"page":"661-696","oa_version":"Preprint","isi":1}