{"intvolume":" 224","volume":224,"publist_id":"7177","year":"2017","author":[{"full_name":"Hill Yardin, Elisa","first_name":"Elisa","last_name":"Hill Yardin"},{"full_name":"Mckeown, Sonja","last_name":"Mckeown","first_name":"Sonja"},{"orcid":"0000-0002-7673-7178","first_name":"Gaia","last_name":"Novarino","id":"3E57A680-F248-11E8-B48F-1D18A9856A87","full_name":"Novarino, Gaia"},{"full_name":"Grabrucker, Andreas","last_name":"Grabrucker","first_name":"Andreas"}],"publication":"Translational Anatomy and Cell Biology of Autism Spectrum Disorder","doi":"10.1007/978-3-319-52498-6_9","page":"159 - 187","publication_identifier":{"issn":["03015556"],"isbn":["978-3-319-52496-2"]},"citation":{"short":"E. Hill Yardin, S. Mckeown, G. Novarino, A. Grabrucker, in:, M. Schmeisser, T. Boekers (Eds.), Translational Anatomy and Cell Biology of Autism Spectrum Disorder, Springer, 2017, pp. 159–187.","chicago":"Hill Yardin, Elisa, Sonja Mckeown, Gaia Novarino, and Andreas Grabrucker. “Extracerebral Dysfunction in Animal Models of Autism Spectrum Disorder.” In Translational Anatomy and Cell Biology of Autism Spectrum Disorder, edited by Michael Schmeisser and Tobias Boekers, 224:159–87. Advances in Anatomy Embryology and Cell Biology. Springer, 2017. https://doi.org/10.1007/978-3-319-52498-6_9.","ista":"Hill Yardin E, Mckeown S, Novarino G, Grabrucker A. 2017.Extracerebral dysfunction in animal models of autism spectrum disorder. In: Translational Anatomy and Cell Biology of Autism Spectrum Disorder. ADVSANAT, vol. 224, 159–187.","apa":"Hill Yardin, E., Mckeown, S., Novarino, G., & Grabrucker, A. (2017). Extracerebral dysfunction in animal models of autism spectrum disorder. In M. Schmeisser & T. Boekers (Eds.), Translational Anatomy and Cell Biology of Autism Spectrum Disorder (Vol. 224, pp. 159–187). Springer. https://doi.org/10.1007/978-3-319-52498-6_9","ama":"Hill Yardin E, Mckeown S, Novarino G, Grabrucker A. Extracerebral dysfunction in animal models of autism spectrum disorder. In: Schmeisser M, Boekers T, eds. Translational Anatomy and Cell Biology of Autism Spectrum Disorder. Vol 224. Advances in Anatomy Embryology and Cell Biology. Springer; 2017:159-187. doi:10.1007/978-3-319-52498-6_9","ieee":"E. Hill Yardin, S. Mckeown, G. Novarino, and A. Grabrucker, “Extracerebral dysfunction in animal models of autism spectrum disorder,” in Translational Anatomy and Cell Biology of Autism Spectrum Disorder, vol. 224, M. Schmeisser and T. Boekers, Eds. Springer, 2017, pp. 159–187.","mla":"Hill Yardin, Elisa, et al. “Extracerebral Dysfunction in Animal Models of Autism Spectrum Disorder.” Translational Anatomy and Cell Biology of Autism Spectrum Disorder, edited by Michael Schmeisser and Tobias Boekers, vol. 224, Springer, 2017, pp. 159–87, doi:10.1007/978-3-319-52498-6_9."},"_id":"623","editor":[{"full_name":"Schmeisser, Michael","first_name":"Michael","last_name":"Schmeisser"},{"first_name":"Tobias","last_name":"Boekers","full_name":"Boekers, Tobias"}],"language":[{"iso":"eng"}],"oa_version":"None","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_created":"2018-12-11T11:47:33Z","series_title":"Advances in Anatomy Embryology and Cell Biology","publisher":"Springer","scopus_import":1,"title":"Extracerebral dysfunction in animal models of autism spectrum disorder","quality_controlled":"1","status":"public","alternative_title":["ADVSANAT"],"type":"book_chapter","day":"28","month":"05","date_updated":"2021-01-12T08:06:46Z","publication_status":"published","date_published":"2017-05-28T00:00:00Z","department":[{"_id":"GaNo"}],"abstract":[{"lang":"eng","text":"Genetic factors might be largely responsible for the development of autism spectrum disorder (ASD) that alone or in combination with specific environmental risk factors trigger the pathology. Multiple mutations identified in ASD patients that impair synaptic function in the central nervous system are well studied in animal models. How these mutations might interact with other risk factors is not fully understood though. Additionally, how systems outside of the brain are altered in the context of ASD is an emerging area of research. Extracerebral influences on the physiology could begin in utero and contribute to changes in the brain and in the development of other body systems and further lead to epigenetic changes. Therefore, multiple recent studies have aimed at elucidating the role of gene-environment interactions in ASD. Here we provide an overview on the extracerebral systems that might play an important associative role in ASD and review evidence regarding the potential roles of inflammation, trace metals, metabolism, genetic susceptibility, enteric nervous system function and the microbiota of the gastrointestinal (GI) tract on the development of endophenotypes in animal models of ASD. By influencing environmental conditions, it might be possible to reduce or limit the severity of ASD pathology."}]}