{"date_published":"2018-12-01T00:00:00Z","publication_status":"published","issue":"2","department":[{"_id":"VlKo"}],"abstract":[{"lang":"eng","text":"The main result of this article is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even Δ-matroids, we then extend the tractability result to larger classes of Δ-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely, co-independent, compact, local, linear, and binary, with the following caveat:We represent Δ-matroids by lists of tuples, while the last two use a representation by matrices. Since an n ×n matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary Δ-matroids."}],"main_file_link":[{"url":"https://arxiv.org/abs/1602.03124","open_access":"1"}],"type":"journal_article","day":"01","article_processing_charge":"No","month":"12","date_updated":"2023-09-20T11:20:26Z","title":"Even delta-matroids and the complexity of planar boolean CSPs","quality_controlled":"1","status":"public","related_material":{"record":[{"id":"1192","relation":"earlier_version","status":"public"}]},"oa_version":"Preprint","oa":1,"date_created":"2019-02-17T22:59:25Z","user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","publisher":"ACM","scopus_import":"1","article_type":"original","citation":{"mla":"Kazda, Alexandr, et al. “Even Delta-Matroids and the Complexity of Planar Boolean CSPs.” ACM Transactions on Algorithms, vol. 15, no. 2, 22, ACM, 2018, doi:10.1145/3230649.","ieee":"A. Kazda, V. Kolmogorov, and M. Rolinek, “Even delta-matroids and the complexity of planar boolean CSPs,” ACM Transactions on Algorithms, vol. 15, no. 2. ACM, 2018.","apa":"Kazda, A., Kolmogorov, V., & Rolinek, M. (2018). Even delta-matroids and the complexity of planar boolean CSPs. ACM Transactions on Algorithms. ACM. https://doi.org/10.1145/3230649","ista":"Kazda A, Kolmogorov V, Rolinek M. 2018. Even delta-matroids and the complexity of planar boolean CSPs. ACM Transactions on Algorithms. 15(2), 22.","chicago":"Kazda, Alexandr, Vladimir Kolmogorov, and Michal Rolinek. “Even Delta-Matroids and the Complexity of Planar Boolean CSPs.” ACM Transactions on Algorithms. ACM, 2018. https://doi.org/10.1145/3230649.","ama":"Kazda A, Kolmogorov V, Rolinek M. Even delta-matroids and the complexity of planar boolean CSPs. ACM Transactions on Algorithms. 2018;15(2). doi:10.1145/3230649","short":"A. Kazda, V. Kolmogorov, M. Rolinek, ACM Transactions on Algorithms 15 (2018)."},"ec_funded":1,"_id":"6032","article_number":"22","language":[{"iso":"eng"}],"author":[{"first_name":"Alexandr","last_name":"Kazda","id":"3B32BAA8-F248-11E8-B48F-1D18A9856A87","full_name":"Kazda, Alexandr"},{"full_name":"Kolmogorov, Vladimir","id":"3D50B0BA-F248-11E8-B48F-1D18A9856A87","first_name":"Vladimir","last_name":"Kolmogorov"},{"id":"3CB3BC06-F248-11E8-B48F-1D18A9856A87","full_name":"Rolinek, Michal","last_name":"Rolinek","first_name":"Michal"}],"publication":"ACM Transactions on Algorithms","doi":"10.1145/3230649","external_id":{"arxiv":["1602.03124"],"isi":["000468036500007"]},"isi":1,"project":[{"name":"Discrete Optimization in Computer Vision: Theory and Practice","_id":"25FBA906-B435-11E9-9278-68D0E5697425","grant_number":"616160","call_identifier":"FP7"}],"intvolume":" 15","volume":15,"year":"2018"}