{"_id":"5420","author":[{"orcid":"0000-0002-4561-241X","full_name":"Chatterjee, Krishnendu","first_name":"Krishnendu","id":"2E5DCA20-F248-11E8-B48F-1D18A9856A87","last_name":"Chatterjee"},{"orcid":"0000-0003-4783-0389","first_name":"Rasmus","full_name":"Ibsen-Jensen, Rasmus","id":"3B699956-F248-11E8-B48F-1D18A9856A87","last_name":"Ibsen-Jensen"}],"doi":"10.15479/AT:IST-2014-191-v1-1","alternative_title":["IST Austria Technical Report"],"title":"The value 1 problem for concurrent mean-payoff games","publication_status":"published","abstract":[{"text":"We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy).","lang":"eng"}],"oa_version":"Published Version","date_updated":"2021-01-12T08:02:05Z","has_accepted_license":"1","type":"technical_report","publication_identifier":{"issn":["2664-1690"]},"file":[{"content_type":"application/pdf","file_size":584368,"date_created":"2018-12-12T11:53:58Z","checksum":"49e0fd3e62650346daf7dc04604f7a0a","access_level":"open_access","relation":"main_file","file_name":"IST-2014-191-v1+1_main_full.pdf","file_id":"5520","creator":"system","date_updated":"2020-07-14T12:46:50Z"}],"pubrep_id":"191","language":[{"iso":"eng"}],"publisher":"IST Austria","status":"public","year":"2014","page":"49","day":"14","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_published":"2014-04-14T00:00:00Z","ddc":["000","005"],"oa":1,"file_date_updated":"2020-07-14T12:46:50Z","department":[{"_id":"KrCh"}],"citation":{"ieee":"K. Chatterjee and R. Ibsen-Jensen, The value 1 problem for concurrent mean-payoff games. IST Austria, 2014.","short":"K. Chatterjee, R. Ibsen-Jensen, The Value 1 Problem for Concurrent Mean-Payoff Games, IST Austria, 2014.","ama":"Chatterjee K, Ibsen-Jensen R. The Value 1 Problem for Concurrent Mean-Payoff Games. IST Austria; 2014. doi:10.15479/AT:IST-2014-191-v1-1","mla":"Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. The Value 1 Problem for Concurrent Mean-Payoff Games. IST Austria, 2014, doi:10.15479/AT:IST-2014-191-v1-1.","apa":"Chatterjee, K., & Ibsen-Jensen, R. (2014). The value 1 problem for concurrent mean-payoff games. IST Austria. https://doi.org/10.15479/AT:IST-2014-191-v1-1","chicago":"Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. The Value 1 Problem for Concurrent Mean-Payoff Games. IST Austria, 2014. https://doi.org/10.15479/AT:IST-2014-191-v1-1.","ista":"Chatterjee K, Ibsen-Jensen R. 2014. The value 1 problem for concurrent mean-payoff games, IST Austria, 49p."},"month":"04","date_created":"2018-12-12T11:39:14Z"}