{"publication_identifier":{"issn":["2664-1690"]},"date_updated":"2023-02-23T10:38:10Z","month":"02","doi":"10.15479/AT:IST-2014-172-v1-1","page":"14","day":"19","has_accepted_license":"1","author":[{"id":"40876CD8-F248-11E8-B48F-1D18A9856A87","full_name":"Henzinger, Thomas A","first_name":"Thomas A","last_name":"Henzinger","orcid":"0000−0002−2985−7724"},{"last_name":"Otop","first_name":"Jan","id":"2FC5DA74-F248-11E8-B48F-1D18A9856A87","full_name":"Otop, Jan"}],"file":[{"checksum":"fcc3eab903cfcd3778b338d2d0d44d18","relation":"main_file","access_level":"open_access","creator":"system","file_name":"IST-2014-172-v1+1_report.pdf","content_type":"application/pdf","date_updated":"2020-07-14T12:46:49Z","file_size":383052,"date_created":"2018-12-12T11:53:20Z","file_id":"5481"}],"type":"technical_report","abstract":[{"lang":"eng","text":"We define the model-measuring problem: given a model M and specification φ, what is the maximal distance ρ such that all models M'within distance ρ from M satisfy (or violate)φ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata.\r\nThe model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification.\r\nWe show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved.\r\nWe use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging. \r\nWe give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications."}],"department":[{"_id":"ToHe"}],"pubrep_id":"175","language":[{"iso":"eng"}],"_id":"5417","publication_status":"published","date_published":"2014-02-19T00:00:00Z","citation":{"mla":"Henzinger, Thomas A., and Jan Otop. From Model Checking to Model Measuring. IST Austria, 2014, doi:10.15479/AT:IST-2014-172-v1-1.","ieee":"T. A. Henzinger and J. Otop, From model checking to model measuring. IST Austria, 2014.","ama":"Henzinger TA, Otop J. From Model Checking to Model Measuring. IST Austria; 2014. doi:10.15479/AT:IST-2014-172-v1-1","chicago":"Henzinger, Thomas A, and Jan Otop. From Model Checking to Model Measuring. IST Austria, 2014. https://doi.org/10.15479/AT:IST-2014-172-v1-1.","ista":"Henzinger TA, Otop J. 2014. From model checking to model measuring, IST Austria, 14p.","apa":"Henzinger, T. A., & Otop, J. (2014). From model checking to model measuring. IST Austria. https://doi.org/10.15479/AT:IST-2014-172-v1-1","short":"T.A. Henzinger, J. Otop, From Model Checking to Model Measuring, IST Austria, 2014."},"publisher":"IST Austria","year":"2014","date_created":"2018-12-12T11:39:13Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"oa_version":"Published Version","alternative_title":["IST Austria Technical Report"],"ddc":["000"],"related_material":{"record":[{"id":"2327","relation":"later_version","status":"public"}]},"status":"public","file_date_updated":"2020-07-14T12:46:49Z","title":"From model checking to model measuring"}