{"citation":{"chicago":"Köppen, Mathias, Beatriz Fernández, Lara Carvalho, António Jacinto, and Carl-Philipp J Heisenberg. “Coordinated Cell-Shape Changes Control Epithelial Movement in Zebrafish and Drosophila.” Development. Company of Biologists, 2006. https://doi.org/doi: 10.1242/dev.02439.","ista":"Köppen M, Fernández B, Carvalho L, Jacinto A, Heisenberg C-PJ. 2006. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development. 133(14), 2671–2681.","apa":"Köppen, M., Fernández, B., Carvalho, L., Jacinto, A., & Heisenberg, C.-P. J. (2006). Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development. Company of Biologists. https://doi.org/doi: 10.1242/dev.02439","short":"M. Köppen, B. Fernández, L. Carvalho, A. Jacinto, C.-P.J. Heisenberg, Development 133 (2006) 2671–2681.","mla":"Köppen, Mathias, et al. “Coordinated Cell-Shape Changes Control Epithelial Movement in Zebrafish and Drosophila.” Development, vol. 133, no. 14, Company of Biologists, 2006, pp. 2671–81, doi:doi: 10.1242/dev.02439.","ama":"Köppen M, Fernández B, Carvalho L, Jacinto A, Heisenberg C-PJ. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development. 2006;133(14):2671-2681. doi:doi: 10.1242/dev.02439","ieee":"M. Köppen, B. Fernández, L. Carvalho, A. Jacinto, and C.-P. J. Heisenberg, “Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila,” Development, vol. 133, no. 14. Company of Biologists, pp. 2671–2681, 2006."},"date_created":"2018-12-11T12:07:27Z","month":"07","article_processing_charge":"No","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_published":"2006-07-15T00:00:00Z","page":"2671 - 2681","year":"2006","publisher":"Company of Biologists","status":"public","day":"15","intvolume":" 133","language":[{"iso":"eng"}],"volume":133,"date_updated":"2021-01-12T07:55:08Z","publist_id":"1935","type":"journal_article","extern":"1","publication_status":"published","publication":"Development","issue":"14","oa_version":"None","abstract":[{"text":"Epithelial morphogenesis depends on coordinated changes in cell shape, a process that is still poorly understood. During zebrafish epiboly and Drosophila dorsal closure, cell-shape changes at the epithelial margin are of critical importance. Here evidence is provided for a conserved mechanism of local actin and myosin 2 recruitment during theses events. It was found that during epiboly of the zebrafish embryo, the movement of the outer epithelium (enveloping layer) over the yolk cell surface involves the constriction of marginal cells. This process depends on the recruitment of actin and myosin 2 within the yolk cytoplasm along the margin of the enveloping layer. Actin and myosin 2 recruitment within the yolk cytoplasm requires the Ste20-like kinase Msn1, an orthologue of Drosophila Misshapen. Similarly, in Drosophila, actin and myosin 2 localization and cell constriction at the margin of the epidermis mediate dorsal closure and are controlled by Misshapen. Thus, this study has characterized a conserved mechanism underlying coordinated cell-shape changes during epithelial morphogenesis.","lang":"eng"}],"doi":"doi: 10.1242/dev.02439","author":[{"last_name":"Köppen","full_name":"Köppen, Mathias","first_name":"Mathias"},{"last_name":"Fernández","first_name":"Beatriz","full_name":"Fernández, Beatriz"},{"last_name":"Carvalho","first_name":"Lara","full_name":"Carvalho, Lara"},{"last_name":"Jacinto","full_name":"Jacinto, António","first_name":"António"},{"full_name":"Heisenberg, Carl-Philipp J","first_name":"Carl-Philipp J","orcid":"0000-0002-0912-4566","last_name":"Heisenberg","id":"39427864-F248-11E8-B48F-1D18A9856A87"}],"_id":"4184","title":"Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila"}