{"isi":1,"language":[{"iso":"eng"}],"page":"412-414","_id":"409","quality_controlled":"1","user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","day":"01","month":"04","main_file_link":[{"url":"https://arxiv.org/abs/1805.01652","open_access":"1"}],"publist_id":"7420","publication_status":"published","date_updated":"2023-09-13T09:34:12Z","department":[{"_id":"HeEd"}],"article_processing_charge":"No","external_id":{"arxiv":["1805.01652"],"isi":["000430402700009"]},"article_type":"original","doi":"10.1016/j.crma.2018.03.005","title":"On the number of non-hexagons in a planar tiling","publication_identifier":{"issn":["1631073X"]},"oa":1,"abstract":[{"lang":"eng","text":"We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons."}],"date_created":"2018-12-11T11:46:19Z","author":[{"id":"430D2C90-F248-11E8-B48F-1D18A9856A87","first_name":"Arseniy","last_name":"Akopyan","orcid":"0000-0002-2548-617X","full_name":"Akopyan, Arseniy"}],"intvolume":" 356","publisher":"Elsevier","year":"2018","volume":356,"date_published":"2018-04-01T00:00:00Z","citation":{"apa":"Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. Elsevier. https://doi.org/10.1016/j.crma.2018.03.005","short":"A. Akopyan, Comptes Rendus Mathematique 356 (2018) 412–414.","mla":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique, vol. 356, no. 4, Elsevier, 2018, pp. 412–14, doi:10.1016/j.crma.2018.03.005.","chicago":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique. Elsevier, 2018. https://doi.org/10.1016/j.crma.2018.03.005.","ieee":"A. Akopyan, “On the number of non-hexagons in a planar tiling,” Comptes Rendus Mathematique, vol. 356, no. 4. Elsevier, pp. 412–414, 2018.","ista":"Akopyan A. 2018. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 356(4), 412–414.","ama":"Akopyan A. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 2018;356(4):412-414. doi:10.1016/j.crma.2018.03.005"},"publication":"Comptes Rendus Mathematique","type":"journal_article","oa_version":"Preprint","status":"public","issue":"4","scopus_import":"1"}