{"issue":"4","language":[{"iso":"eng"}],"volume":356,"publication_identifier":{"issn":["1631073X"]},"year":"2018","date_created":"2018-12-11T11:46:19Z","date_updated":"2023-09-13T09:34:12Z","month":"04","publication_status":"published","oa_version":"Preprint","scopus_import":"1","_id":"409","status":"public","department":[{"_id":"HeEd"}],"publication":"Comptes Rendus Mathematique","author":[{"orcid":"0000-0002-2548-617X","id":"430D2C90-F248-11E8-B48F-1D18A9856A87","full_name":"Akopyan, Arseniy","last_name":"Akopyan","first_name":"Arseniy"}],"page":"412-414","title":"On the number of non-hexagons in a planar tiling","oa":1,"intvolume":" 356","article_processing_charge":"No","citation":{"short":"A. Akopyan, Comptes Rendus Mathematique 356 (2018) 412–414.","mla":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique, vol. 356, no. 4, Elsevier, 2018, pp. 412–14, doi:10.1016/j.crma.2018.03.005.","ista":"Akopyan A. 2018. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 356(4), 412–414.","ieee":"A. Akopyan, “On the number of non-hexagons in a planar tiling,” Comptes Rendus Mathematique, vol. 356, no. 4. Elsevier, pp. 412–414, 2018.","ama":"Akopyan A. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 2018;356(4):412-414. doi:10.1016/j.crma.2018.03.005","chicago":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique. Elsevier, 2018. https://doi.org/10.1016/j.crma.2018.03.005.","apa":"Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. Elsevier. https://doi.org/10.1016/j.crma.2018.03.005"},"doi":"10.1016/j.crma.2018.03.005","date_published":"2018-04-01T00:00:00Z","external_id":{"isi":["000430402700009"],"arxiv":["1805.01652"]},"quality_controlled":"1","publist_id":"7420","article_type":"original","isi":1,"abstract":[{"text":"We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.","lang":"eng"}],"user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","type":"journal_article","publisher":"Elsevier","main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/1805.01652"}],"day":"01"}