{"type":"journal_article","article_processing_charge":"No","department":[{"_id":"HeEd"}],"issue":"4","quality_controlled":"1","publication_status":"published","volume":356,"status":"public","_id":"409","month":"04","author":[{"id":"430D2C90-F248-11E8-B48F-1D18A9856A87","first_name":"Arseniy","last_name":"Akopyan","orcid":"0000-0002-2548-617X","full_name":"Akopyan, Arseniy"}],"citation":{"short":"A. Akopyan, Comptes Rendus Mathematique 356 (2018) 412–414.","chicago":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique. Elsevier, 2018. https://doi.org/10.1016/j.crma.2018.03.005.","ama":"Akopyan A. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 2018;356(4):412-414. doi:10.1016/j.crma.2018.03.005","ista":"Akopyan A. 2018. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 356(4), 412–414.","ieee":"A. Akopyan, “On the number of non-hexagons in a planar tiling,” Comptes Rendus Mathematique, vol. 356, no. 4. Elsevier, pp. 412–414, 2018.","apa":"Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. Elsevier. https://doi.org/10.1016/j.crma.2018.03.005","mla":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique, vol. 356, no. 4, Elsevier, 2018, pp. 412–14, doi:10.1016/j.crma.2018.03.005."},"date_created":"2018-12-11T11:46:19Z","scopus_import":"1","title":"On the number of non-hexagons in a planar tiling","date_published":"2018-04-01T00:00:00Z","doi":"10.1016/j.crma.2018.03.005","publication":"Comptes Rendus Mathematique","main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/1805.01652"}],"publication_identifier":{"issn":["1631073X"]},"publist_id":"7420","article_type":"original","intvolume":" 356","date_updated":"2023-09-13T09:34:12Z","day":"01","language":[{"iso":"eng"}],"year":"2018","oa":1,"external_id":{"isi":["000430402700009"],"arxiv":["1805.01652"]},"abstract":[{"lang":"eng","text":"We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons."}],"publisher":"Elsevier","user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","isi":1,"page":"412-414","oa_version":"Preprint"}