{"day":"20","date_updated":"2022-02-10T13:27:41Z","extern":"1","language":[{"iso":"eng"}],"year":"1989","main_file_link":[{"url":"https://link.springer.com/chapter/10.1007/3-540-51084-2_31"}],"publist_id":"2035","intvolume":" 358","conference":{"start_date":"1988-07-04","location":"Rome, Italy","name":"ISSAC: International Symposium on Symbolic and Algebraic Computation","end_date":"1988-07-08"},"publication":" International Symposium on Symbolic and Algebraic Computation","doi":"10.1007/3-540-51084-2_31","page":"315 - 331","oa_version":"None","publisher":"Springer","abstract":[{"text":"This paper offers combinatorial results on extremum problems concerning the number of tetrahedra in a tetrahedrization of n points in general position in three dimensions, i.e. such that no four points are coplanar. It also presents an algorithm that in O(nlog n) time constructs a tetrahedrization of a set of n points consisting of at most 3n–11 tetrahedra.","lang":"eng"}],"user_id":"ea97e931-d5af-11eb-85d4-e6957dddbf17","status":"public","_id":"4087","publication_status":"published","quality_controlled":"1","volume":358,"type":"conference","alternative_title":["LNCS"],"article_processing_charge":"No","title":"Tetrahedrizing point sets in three dimensions","date_published":"1989-09-20T00:00:00Z","date_created":"2018-12-11T12:06:52Z","acknowledgement":"Research of the first author is supported by Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862, the second author is supported by NSF Grant ECS 84-10902, and research of the third author is supported in part by ONR Grant N00014-85K0570 and by NSF Grant DMS 8504","scopus_import":"1","month":"09","author":[{"orcid":"0000-0002-9823-6833","first_name":"Herbert","last_name":"Edelsbrunner","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","full_name":"Edelsbrunner, Herbert"},{"first_name":"Franco","last_name":"Preparata","full_name":"Preparata, Franco"},{"full_name":"West, Douglas","last_name":"West","first_name":"Douglas"}],"citation":{"ama":"Edelsbrunner H, Preparata F, West D. Tetrahedrizing point sets in three dimensions. In: International Symposium on Symbolic and Algebraic Computation. Vol 358. Springer; 1989:315-331. doi:10.1007/3-540-51084-2_31","chicago":"Edelsbrunner, Herbert, Franco Preparata, and Douglas West. “Tetrahedrizing Point Sets in Three Dimensions.” In International Symposium on Symbolic and Algebraic Computation, 358:315–31. Springer, 1989. https://doi.org/10.1007/3-540-51084-2_31.","mla":"Edelsbrunner, Herbert, et al. “Tetrahedrizing Point Sets in Three Dimensions.” International Symposium on Symbolic and Algebraic Computation, vol. 358, Springer, 1989, pp. 315–31, doi:10.1007/3-540-51084-2_31.","apa":"Edelsbrunner, H., Preparata, F., & West, D. (1989). Tetrahedrizing point sets in three dimensions. In International Symposium on Symbolic and Algebraic Computation (Vol. 358, pp. 315–331). Rome, Italy: Springer. https://doi.org/10.1007/3-540-51084-2_31","ista":"Edelsbrunner H, Preparata F, West D. 1989. Tetrahedrizing point sets in three dimensions. International Symposium on Symbolic and Algebraic Computation. ISSAC: International Symposium on Symbolic and Algebraic Computation, LNCS, vol. 358, 315–331.","ieee":"H. Edelsbrunner, F. Preparata, and D. West, “Tetrahedrizing point sets in three dimensions,” in International Symposium on Symbolic and Algebraic Computation, Rome, Italy, 1989, vol. 358, pp. 315–331.","short":"H. Edelsbrunner, F. Preparata, D. West, in:, International Symposium on Symbolic and Algebraic Computation, Springer, 1989, pp. 315–331."}}