{"type":"journal_article","day":"01","month":"08","article_processing_charge":"No","date_updated":"2022-02-11T11:15:43Z","extern":"1","date_published":"1989-08-01T00:00:00Z","publication_status":"published","issue":"2","abstract":[{"lang":"eng","text":"A tour of a finite set P of points is a necklace-tour if there are disks with the points in P as centers such that two disks intersect if and only if their centers are adjacent in . It has been observed by Sanders that a necklace-tour is an optimal traveling salesman tour.\r\n\r\nIn this paper, we present an algorithm that either reports that no necklace-tour exists or outputs a necklace-tour of a given set of n points in O(n2 log n) time. If a tour is given, then we can test in O(n2) time whether or not this tour is a necklace-tour. Both algorithms can be generalized to ƒ-factors of point sets in the plane. The complexity results rely on a combinatorial analysis of certain intersection graphs of disks defined for finite sets of points in the plane."}],"main_file_link":[{"url":"https://www.sciencedirect.com/science/article/pii/0304397589901333?via%3Dihub","open_access":"1"}],"oa":1,"oa_version":"Published Version","user_id":"ea97e931-d5af-11eb-85d4-e6957dddbf17","date_created":"2018-12-11T12:06:51Z","publisher":"Elsevier","scopus_import":"1","title":"Testing the necklace condition for shortest tours and optimal factors in the plane","quality_controlled":"1","status":"public","page":"157 - 180","doi":"10.1016/0304-3975(89)90133-3","publication":"Theoretical Computer Science","author":[{"orcid":"0000-0002-9823-6833","first_name":"Herbert","last_name":"Edelsbrunner","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","full_name":"Edelsbrunner, Herbert"},{"first_name":"Günter","last_name":"Rote","full_name":"Rote, Günter"},{"full_name":"Welzl, Emo","last_name":"Welzl","first_name":"Emo"}],"publication_identifier":{"eissn":["1879-2294"],"issn":["0304-3975"]},"article_type":"original","citation":{"ieee":"H. Edelsbrunner, G. Rote, and E. Welzl, “Testing the necklace condition for shortest tours and optimal factors in the plane,” Theoretical Computer Science, vol. 66, no. 2. Elsevier, pp. 157–180, 1989.","mla":"Edelsbrunner, Herbert, et al. “Testing the Necklace Condition for Shortest Tours and Optimal Factors in the Plane.” Theoretical Computer Science, vol. 66, no. 2, Elsevier, 1989, pp. 157–80, doi:10.1016/0304-3975(89)90133-3.","short":"H. Edelsbrunner, G. Rote, E. Welzl, Theoretical Computer Science 66 (1989) 157–180.","apa":"Edelsbrunner, H., Rote, G., & Welzl, E. (1989). Testing the necklace condition for shortest tours and optimal factors in the plane. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/0304-3975(89)90133-3","chicago":"Edelsbrunner, Herbert, Günter Rote, and Emo Welzl. “Testing the Necklace Condition for Shortest Tours and Optimal Factors in the Plane.” Theoretical Computer Science. Elsevier, 1989. https://doi.org/10.1016/0304-3975(89)90133-3.","ista":"Edelsbrunner H, Rote G, Welzl E. 1989. Testing the necklace condition for shortest tours and optimal factors in the plane. Theoretical Computer Science. 66(2), 157–180.","ama":"Edelsbrunner H, Rote G, Welzl E. Testing the necklace condition for shortest tours and optimal factors in the plane. Theoretical Computer Science. 1989;66(2):157-180. doi:10.1016/0304-3975(89)90133-3"},"language":[{"iso":"eng"}],"_id":"4084","intvolume":" 66","publist_id":"2041","volume":66,"year":"1989"}