{"scopus_import":"1","date_created":"2018-12-11T12:06:46Z","date_published":"1990-01-01T00:00:00Z","title":"Ranking intervals under visibility constraints","citation":{"short":"H. Edelsbrunner, M. Overmars, E. Welzl, I. Hartman, J. Feldman, International Journal of Computer Mathematics 34 (1990) 129–144.","ama":"Edelsbrunner H, Overmars M, Welzl E, Hartman I, Feldman J. Ranking intervals under visibility constraints. International Journal of Computer Mathematics. 1990;34(3-4):129-144. doi:10.1080/00207169008803871","chicago":"Edelsbrunner, Herbert, Mark Overmars, Emo Welzl, Irith Hartman, and Jack Feldman. “Ranking Intervals under Visibility Constraints.” International Journal of Computer Mathematics. Taylor & Francis, 1990. https://doi.org/10.1080/00207169008803871.","mla":"Edelsbrunner, Herbert, et al. “Ranking Intervals under Visibility Constraints.” International Journal of Computer Mathematics, vol. 34, no. 3–4, Taylor & Francis, 1990, pp. 129–44, doi:10.1080/00207169008803871.","apa":"Edelsbrunner, H., Overmars, M., Welzl, E., Hartman, I., & Feldman, J. (1990). Ranking intervals under visibility constraints. International Journal of Computer Mathematics. Taylor & Francis. https://doi.org/10.1080/00207169008803871","ista":"Edelsbrunner H, Overmars M, Welzl E, Hartman I, Feldman J. 1990. Ranking intervals under visibility constraints. International Journal of Computer Mathematics. 34(3–4), 129–144.","ieee":"H. Edelsbrunner, M. Overmars, E. Welzl, I. Hartman, and J. Feldman, “Ranking intervals under visibility constraints,” International Journal of Computer Mathematics, vol. 34, no. 3–4. Taylor & Francis, pp. 129–144, 1990."},"month":"01","author":[{"last_name":"Edelsbrunner","first_name":"Herbert","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-9823-6833","full_name":"Edelsbrunner, Herbert"},{"last_name":"Overmars","first_name":"Mark","full_name":"Overmars, Mark"},{"last_name":"Welzl","first_name":"Emo","full_name":"Welzl, Emo"},{"last_name":"Hartman","first_name":"Irith","full_name":"Hartman, Irith"},{"first_name":"Jack","last_name":"Feldman","full_name":"Feldman, Jack"}],"quality_controlled":"1","publication_status":"published","volume":34,"_id":"4070","status":"public","article_processing_charge":"No","type":"journal_article","issue":"3-4","oa_version":"None","page":"129 - 144","publisher":"Taylor & Francis","abstract":[{"lang":"eng","text":"Let S be a set of n closed intervals on the x-axis. A ranking assigns to each interval, s, a distinct rank, p(s)∊ [1, 2,…,n]. We say that s can see t if p(s)