{"_id":"400","status":"public","department":[{"_id":"RoSe"}],"publication":"Annales Henri Poincare","author":[{"full_name":"Deuchert, Andreas","last_name":"Deuchert","first_name":"Andreas","orcid":"0000-0003-3146-6746","id":"4DA65CD0-F248-11E8-B48F-1D18A9856A87"},{"first_name":"Alissa","last_name":"Geisinge","full_name":"Geisinge, Alissa"},{"full_name":"Hainzl, Christian","last_name":"Hainzl","first_name":"Christian"},{"full_name":"Loss, Michael","last_name":"Loss","first_name":"Michael"}],"page":"1507 - 1527","issue":"5","language":[{"iso":"eng"}],"year":"2018","volume":19,"date_created":"2018-12-11T11:46:15Z","date_updated":"2023-09-15T12:04:15Z","file":[{"creator":"system","access_level":"open_access","date_updated":"2020-07-14T12:46:22Z","date_created":"2018-12-12T10:12:47Z","file_name":"IST-2018-1011-v1+1_2018_Deuchert_Persistence.pdf","relation":"main_file","file_size":582680,"content_type":"application/pdf","checksum":"04d2c9bd7cbf3ca1d7acaaf4e7dca3e5","file_id":"4966"}],"month":"05","publication_status":"published","project":[{"name":"Analysis of quantum many-body systems","call_identifier":"H2020","_id":"25C6DC12-B435-11E9-9278-68D0E5697425","grant_number":"694227"},{"_id":"B67AFEDC-15C9-11EA-A837-991A96BB2854","name":"IST Austria Open Access Fund"}],"oa_version":"Published Version","scopus_import":"1","has_accepted_license":"1","isi":1,"abstract":[{"text":"We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.","lang":"eng"}],"file_date_updated":"2020-07-14T12:46:22Z","user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","type":"journal_article","publisher":"Springer","day":"01","ddc":["510"],"tmp":{"legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","short":"CC BY (4.0)","image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)"},"title":"Persistence of translational symmetry in the BCS model with radial pair interaction","oa":1,"intvolume":" 19","doi":"10.1007/s00023-018-0665-7","ec_funded":1,"article_processing_charge":"Yes (via OA deal)","citation":{"apa":"Deuchert, A., Geisinge, A., Hainzl, C., & Loss, M. (2018). Persistence of translational symmetry in the BCS model with radial pair interaction. Annales Henri Poincare. Springer. https://doi.org/10.1007/s00023-018-0665-7","chicago":"Deuchert, Andreas, Alissa Geisinge, Christian Hainzl, and Michael Loss. “Persistence of Translational Symmetry in the BCS Model with Radial Pair Interaction.” Annales Henri Poincare. Springer, 2018. https://doi.org/10.1007/s00023-018-0665-7.","ama":"Deuchert A, Geisinge A, Hainzl C, Loss M. Persistence of translational symmetry in the BCS model with radial pair interaction. Annales Henri Poincare. 2018;19(5):1507-1527. doi:10.1007/s00023-018-0665-7","ieee":"A. Deuchert, A. Geisinge, C. Hainzl, and M. Loss, “Persistence of translational symmetry in the BCS model with radial pair interaction,” Annales Henri Poincare, vol. 19, no. 5. Springer, pp. 1507–1527, 2018.","mla":"Deuchert, Andreas, et al. “Persistence of Translational Symmetry in the BCS Model with Radial Pair Interaction.” Annales Henri Poincare, vol. 19, no. 5, Springer, 2018, pp. 1507–27, doi:10.1007/s00023-018-0665-7.","ista":"Deuchert A, Geisinge A, Hainzl C, Loss M. 2018. Persistence of translational symmetry in the BCS model with radial pair interaction. Annales Henri Poincare. 19(5), 1507–1527.","short":"A. Deuchert, A. Geisinge, C. Hainzl, M. Loss, Annales Henri Poincare 19 (2018) 1507–1527."},"date_published":"2018-05-01T00:00:00Z","external_id":{"isi":["000429799900008"]},"quality_controlled":"1","publist_id":"7429","pubrep_id":"1011"}