{"conference":{"name":"CONCUR: Concurrency Theory"},"publication_status":"published","date_published":"2007-09-01T00:00:00Z","citation":{"ieee":"K. Chatterjee, T. A. Henzinger, and N. Piterman, “Strategy logic,” presented at the CONCUR: Concurrency Theory, 2007, vol. 4703, pp. 59–73.","mla":"Chatterjee, Krishnendu, et al. Strategy Logic. Vol. 4703, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2007, pp. 59–73, doi:10.1007/978-3-540-74407-8_5.","short":"K. Chatterjee, T.A. Henzinger, N. Piterman, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2007, pp. 59–73.","ama":"Chatterjee K, Henzinger TA, Piterman N. Strategy logic. In: Vol 4703. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2007:59-73. doi:10.1007/978-3-540-74407-8_5","apa":"Chatterjee, K., Henzinger, T. A., & Piterman, N. (2007). Strategy logic (Vol. 4703, pp. 59–73). Presented at the CONCUR: Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.1007/978-3-540-74407-8_5","chicago":"Chatterjee, Krishnendu, Thomas A Henzinger, and Nir Piterman. “Strategy Logic,” 4703:59–73. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2007. https://doi.org/10.1007/978-3-540-74407-8_5.","ista":"Chatterjee K, Henzinger TA, Piterman N. 2007. Strategy logic. CONCUR: Concurrency Theory, LNCS, vol. 4703, 59–73."},"extern":1,"_id":"3884","abstract":[{"lang":"eng","text":"We introduce strategy logic, a logic that treats strategies in two-player games as explicit first-order objects. The explicit treatment of strategies allows us to specify properties of nonzero-sum games in a simple and natural way. We show that the one-alternation fragment of strategy logic is strong enough to express the existence of Nash equilibria and secure equilibria, and subsumes other logics that were introduced to reason about games, such as ATL, ATL*, and game logic. We show that strategy logic is decidable, by constructing tree automata that recognize sets of strategies. While for the general logic, our decision procedure is nonelementary, for the simple fragment that is used above we show that the complexity is polynomial in the size of the game graph and optimal in the size of the formula (ranging from polynomial to 2EXPTIME depending on the form of the formula)."}],"type":"conference","page":"59 - 73","doi":"10.1007/978-3-540-74407-8_5","author":[{"first_name":"Krishnendu","last_name":"Chatterjee","id":"2E5DCA20-F248-11E8-B48F-1D18A9856A87","full_name":"Krishnendu Chatterjee","orcid":"0000-0002-4561-241X"},{"full_name":"Thomas Henzinger","id":"40876CD8-F248-11E8-B48F-1D18A9856A87","first_name":"Thomas A","last_name":"Henzinger","orcid":"0000−0002−2985−7724"},{"last_name":"Piterman","first_name":"Nir","full_name":"Piterman, Nir"}],"day":"01","month":"09","date_updated":"2023-02-23T11:45:56Z","quality_controlled":0,"title":"Strategy logic","related_material":{"record":[{"relation":"later_version","id":"3861","status":"public"}]},"status":"public","alternative_title":["LNCS"],"intvolume":" 4703","volume":4703,"date_created":"2018-12-11T12:05:41Z","publist_id":"2286","publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","year":"2007"}