{"publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","scopus_import":1,"oa":1,"oa_version":"Submitted Version","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_created":"2018-12-11T12:05:34Z","alternative_title":["LIPIcs"],"quality_controlled":"1","title":"Generalized mean-payoff and energy games","status":"public","article_processing_charge":"No","month":"12","tmp":{"legal_code_url":"https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode","image":"/images/cc_by_nc_nd.png","name":"Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)","short":"CC BY-NC-ND (4.0)"},"date_updated":"2021-01-12T07:52:44Z","file":[{"file_id":"5147","file_size":178278,"date_created":"2018-12-12T10:15:27Z","date_updated":"2020-07-14T12:46:18Z","content_type":"application/pdf","creator":"system","access_level":"open_access","file_name":"IST-2012-59-v1+1_Generalized_mean-payoff_and_energy_games.pdf","checksum":"1caabd6319b979927208117a41192637","relation":"main_file"},{"file_id":"5148","date_created":"2018-12-12T10:15:28Z","file_size":477976,"date_updated":"2020-07-14T12:46:18Z","content_type":"application/pdf","access_level":"open_access","creator":"system","file_name":"IST-2016-59-v2+1_2_1_.pdf","checksum":"3a59759ceeacdb5b578f3803d5e6769b","relation":"main_file"}],"type":"conference","license":"https://creativecommons.org/licenses/by-nc-nd/4.0/","day":"13","department":[{"_id":"KrCh"},{"_id":"ToHe"}],"abstract":[{"lang":"eng","text":"In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Generalized mean-payoff and energy games replace individual weights by tuples, and the limit average (resp. running sum) of each coordinate must be (resp. remain) nonnegative. These games have applications in the synthesis of resource-bounded processes with multiple resources. We prove the finite-memory determinacy of generalized energy games and show the inter- reducibility of generalized mean-payoff and energy games for finite-memory strategies. We also improve the computational complexity for solving both classes of games with finite-memory strategies: while the previously best known upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that the problem of deciding the existence of a winning strategy for the protagonist is NP-complete."}],"date_published":"2010-12-13T00:00:00Z","publication_status":"published","year":"2010","intvolume":" 8","volume":8,"publist_id":"2321","ddc":["005"],"file_date_updated":"2020-07-14T12:46:18Z","doi":"10.4230/LIPIcs.FSTTCS.2010.505","page":"505 - 516","author":[{"id":"2E5DCA20-F248-11E8-B48F-1D18A9856A87","full_name":"Chatterjee, Krishnendu","first_name":"Krishnendu","last_name":"Chatterjee","orcid":"0000-0002-4561-241X"},{"full_name":"Doyen, Laurent","last_name":"Doyen","first_name":"Laurent"},{"orcid":"0000−0002−2985−7724","last_name":"Henzinger","first_name":"Thomas A","full_name":"Henzinger, Thomas A","id":"40876CD8-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Raskin, Jean","last_name":"Raskin","first_name":"Jean"}],"has_accepted_license":"1","pubrep_id":"59","language":[{"iso":"eng"}],"_id":"3860","conference":{"location":"Chennai, India","end_date":"2010-12-18","name":"FSTTCS: Foundations of Software Technology and Theoretical Computer Science","start_date":"2010-12-15"},"citation":{"ieee":"K. Chatterjee, L. Doyen, T. A. Henzinger, and J. Raskin, “Generalized mean-payoff and energy games,” presented at the FSTTCS: Foundations of Software Technology and Theoretical Computer Science, Chennai, India, 2010, vol. 8, pp. 505–516.","mla":"Chatterjee, Krishnendu, et al. Generalized Mean-Payoff and Energy Games. Vol. 8, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010, pp. 505–16, doi:10.4230/LIPIcs.FSTTCS.2010.505.","short":"K. Chatterjee, L. Doyen, T.A. Henzinger, J. Raskin, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010, pp. 505–516.","apa":"Chatterjee, K., Doyen, L., Henzinger, T. A., & Raskin, J. (2010). Generalized mean-payoff and energy games (Vol. 8, pp. 505–516). Presented at the FSTTCS: Foundations of Software Technology and Theoretical Computer Science, Chennai, India: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505","chicago":"Chatterjee, Krishnendu, Laurent Doyen, Thomas A Henzinger, and Jean Raskin. “Generalized Mean-Payoff and Energy Games,” 8:505–16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505.","ista":"Chatterjee K, Doyen L, Henzinger TA, Raskin J. 2010. Generalized mean-payoff and energy games. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 8, 505–516.","ama":"Chatterjee K, Doyen L, Henzinger TA, Raskin J. Generalized mean-payoff and energy games. In: Vol 8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2010:505-516. doi:10.4230/LIPIcs.FSTTCS.2010.505"}}