{"intvolume":" 6281","publist_id":"2333","volume":6281,"year":"2010","file_date_updated":"2020-07-14T12:46:17Z","ddc":["000"],"author":[{"id":"43F6EC54-F248-11E8-B48F-1D18A9856A87","full_name":"Bendich, Paul","last_name":"Bendich","first_name":"Paul"},{"orcid":"0000-0002-9823-6833","first_name":"Herbert","last_name":"Edelsbrunner","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","full_name":"Edelsbrunner, Herbert"},{"last_name":"Kerber","first_name":"Michael","full_name":"Kerber, Michael","id":"36E4574A-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-8030-9299"},{"last_name":"Patel","first_name":"Amit","id":"34A254A0-F248-11E8-B48F-1D18A9856A87","full_name":"Patel, Amit"}],"has_accepted_license":"1","page":"12 - 23","doi":"10.1007/978-3-642-15155-2_2","conference":{"location":"Brno, Czech Republic","end_date":"2010-08-27","start_date":"2010-08-23","name":"MFCS: Mathematical Foundations of Computer Science"},"citation":{"mla":"Bendich, Paul, et al. Persistent Homology under Non-Uniform Error. Vol. 6281, Springer, 2010, pp. 12–23, doi:10.1007/978-3-642-15155-2_2.","ieee":"P. Bendich, H. Edelsbrunner, M. Kerber, and A. Patel, “Persistent homology under non-uniform error,” presented at the MFCS: Mathematical Foundations of Computer Science, Brno, Czech Republic, 2010, vol. 6281, pp. 12–23.","ista":"Bendich P, Edelsbrunner H, Kerber M, Patel A. 2010. Persistent homology under non-uniform error. MFCS: Mathematical Foundations of Computer Science, LNCS, vol. 6281, 12–23.","apa":"Bendich, P., Edelsbrunner, H., Kerber, M., & Patel, A. (2010). Persistent homology under non-uniform error (Vol. 6281, pp. 12–23). Presented at the MFCS: Mathematical Foundations of Computer Science, Brno, Czech Republic: Springer. https://doi.org/10.1007/978-3-642-15155-2_2","chicago":"Bendich, Paul, Herbert Edelsbrunner, Michael Kerber, and Amit Patel. “Persistent Homology under Non-Uniform Error,” 6281:12–23. Springer, 2010. https://doi.org/10.1007/978-3-642-15155-2_2.","ama":"Bendich P, Edelsbrunner H, Kerber M, Patel A. Persistent homology under non-uniform error. In: Vol 6281. Springer; 2010:12-23. doi:10.1007/978-3-642-15155-2_2","short":"P. Bendich, H. Edelsbrunner, M. Kerber, A. Patel, in:, Springer, 2010, pp. 12–23."},"_id":"3849","language":[{"iso":"eng"}],"pubrep_id":"537","oa_version":"Submitted Version","oa":1,"date_created":"2018-12-11T12:05:30Z","user_id":"4435EBFC-F248-11E8-B48F-1D18A9856A87","publisher":"Springer","scopus_import":1,"title":"Persistent homology under non-uniform error","quality_controlled":"1","status":"public","alternative_title":["LNCS"],"type":"conference","file":[{"checksum":"af61e1c2bb42f3d556179d4692caeb1b","relation":"main_file","content_type":"application/pdf","access_level":"open_access","creator":"system","file_name":"IST-2016-537-v1+1_2010-P-05-NonuniformError.pdf","date_updated":"2020-07-14T12:46:17Z","file_id":"4994","date_created":"2018-12-12T10:13:13Z","file_size":142357}],"day":"10","month":"08","date_updated":"2021-01-12T07:52:38Z","date_published":"2010-08-10T00:00:00Z","publication_status":"published","department":[{"_id":"HeEd"}],"abstract":[{"lang":"eng","text":"Using ideas from persistent homology, the robustness of a level set of a real-valued function is defined in terms of the magnitude of the perturbation necessary to kill the classes. Prior work has shown that the homology and robustness information can be read off the extended persistence diagram of the function. This paper extends these results to a non-uniform error model in which perturbations vary in their magnitude across the domain."}]}