{"publication_identifier":{"isbn":["978-1-4503-1567-8 "]},"publist_id":"3981","publication_status":"published","quality_controlled":"1","_id":"2820","language":[{"iso":"eng"}],"year":"2013","day":"01","status":"public","date_updated":"2023-09-27T12:52:38Z","type":"conference","publication":"Proceedings of the 16th International conference on Hybrid systems: Computation and control","ec_funded":1,"doi":"10.1145/2461328.2461356","conference":{"end_date":"2013-04-11","location":"Philadelphia, PA, United States","name":"HSCC: Hybrid Systems - Computation and Control","start_date":"2013-04-08"},"department":[{"_id":"KrCh"}],"scopus_import":1,"date_created":"2018-12-11T11:59:46Z","date_published":"2013-04-01T00:00:00Z","page":"163 - 172","oa_version":"None","title":"Automated analysis of real-time scheduling using graph games","project":[{"_id":"25832EC2-B435-11E9-9278-68D0E5697425","call_identifier":"FWF","grant_number":"S 11407_N23","name":"Rigorous Systems Engineering"},{"call_identifier":"FWF","grant_number":"S11407","name":"Game Theory","_id":"25863FF4-B435-11E9-9278-68D0E5697425"},{"_id":"2584A770-B435-11E9-9278-68D0E5697425","call_identifier":"FWF","grant_number":"P 23499-N23","name":"Modern Graph Algorithmic Techniques in Formal Verification"},{"name":"Quantitative Graph Games: Theory and Applications","call_identifier":"FP7","grant_number":"279307","_id":"2581B60A-B435-11E9-9278-68D0E5697425"},{"name":"Microsoft Research Faculty Fellowship","_id":"2587B514-B435-11E9-9278-68D0E5697425"}],"citation":{"short":"K. Chatterjee, A. Kößler, U. Schmid, in:, Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, ACM, 2013, pp. 163–172.","ieee":"K. Chatterjee, A. Kößler, and U. Schmid, “Automated analysis of real-time scheduling using graph games,” in Proceedings of the 16th International conference on Hybrid systems: Computation and control, Philadelphia, PA, United States, 2013, pp. 163–172.","ista":"Chatterjee K, Kößler A, Schmid U. 2013. Automated analysis of real-time scheduling using graph games. Proceedings of the 16th International conference on Hybrid systems: Computation and control. HSCC: Hybrid Systems - Computation and Control, 163–172.","apa":"Chatterjee, K., Kößler, A., & Schmid, U. (2013). Automated analysis of real-time scheduling using graph games. In Proceedings of the 16th International conference on Hybrid systems: Computation and control (pp. 163–172). Philadelphia, PA, United States: ACM. https://doi.org/10.1145/2461328.2461356","mla":"Chatterjee, Krishnendu, et al. “Automated Analysis of Real-Time Scheduling Using Graph Games.” Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, ACM, 2013, pp. 163–72, doi:10.1145/2461328.2461356.","chicago":"Chatterjee, Krishnendu, Alexander Kößler, and Ulrich Schmid. “Automated Analysis of Real-Time Scheduling Using Graph Games.” In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, 163–72. ACM, 2013. https://doi.org/10.1145/2461328.2461356.","ama":"Chatterjee K, Kößler A, Schmid U. Automated analysis of real-time scheduling using graph games. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. ACM; 2013:163-172. doi:10.1145/2461328.2461356"},"month":"04","author":[{"id":"2E5DCA20-F248-11E8-B48F-1D18A9856A87","first_name":"Krishnendu","last_name":"Chatterjee","orcid":"0000-0002-4561-241X","full_name":"Chatterjee, Krishnendu"},{"full_name":"Kößler, Alexander","first_name":"Alexander","last_name":"Kößler"},{"full_name":"Schmid, Ulrich","last_name":"Schmid","first_name":"Ulrich"}],"abstract":[{"lang":"eng","text":"In this paper, we introduce the powerful framework of graph games for the analysis of real-time scheduling with firm deadlines. We introduce a novel instance of a partial-observation game that is suitable for this purpose, and prove decidability of all the involved decision problems. We derive a graph game that allows the automated computation of the competitive ratio (along with an optimal witness algorithm for the competitive ratio) and establish an NP-completeness proof for the graph game problem. For a given on-line algorithm, we present polynomial time solution for computing (i) the worst-case utility; (ii) the worst-case utility ratio w.r.t. a clairvoyant off-line algorithm; and (iii) the competitive ratio. A major strength of the proposed approach lies in its flexibility w.r.t. incorporating additional constraints on the adversary and/or the algorithm, including limited maximum or average load, finiteness of periods of overload, etc., which are easily added by means of additional instances of standard objective functions for graph games. "}],"publisher":"ACM","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","related_material":{"record":[{"relation":"later_version","id":"738","status":"public"}]}}