{"date_published":"2002-01-01T00:00:00Z","year":"2002","article_type":"original","publisher":"Association des Annales de l'Institut Fourier","day":"01","issue":"6","oa_version":"None","quality_controlled":"1","scopus_import":"1","title":"Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions","intvolume":" 52","language":[{"iso":"eng"}],"publist_id":"4152","user_id":"ea97e931-d5af-11eb-85d4-e6957dddbf17","status":"public","page":"1833-1874","citation":{"short":"L. Erdös, Annales de l’Institut Fourier 52 (2002) 1833–1874.","mla":"Erdös, László. “Spectral Shift and Multiplicity of the First Eigenvalue of the Magnetic Schrödinger Operator in Two Dimensions.” Annales de l’Institut Fourier, vol. 52, no. 6, Association des Annales de l’Institut Fourier, 2002, pp. 1833–74, doi:10.5802/aif.1936.","ama":"Erdös L. Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions. Annales de l’Institut Fourier. 2002;52(6):1833-1874. doi:10.5802/aif.1936","ieee":"L. Erdös, “Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions,” Annales de l’Institut Fourier, vol. 52, no. 6. Association des Annales de l’Institut Fourier, pp. 1833–1874, 2002.","ista":"Erdös L. 2002. Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions. Annales de l’Institut Fourier. 52(6), 1833–1874.","chicago":"Erdös, László. “Spectral Shift and Multiplicity of the First Eigenvalue of the Magnetic Schrödinger Operator in Two Dimensions.” Annales de l’Institut Fourier. Association des Annales de l’Institut Fourier, 2002. https://doi.org/10.5802/aif.1936.","apa":"Erdös, L. (2002). Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions. Annales de l’Institut Fourier. Association des Annales de l’Institut Fourier. https://doi.org/10.5802/aif.1936"},"month":"01","date_created":"2018-12-11T11:59:21Z","article_processing_charge":"No","publication_status":"published","publication":"Annales de l'Institut Fourier","abstract":[{"text":"We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle over a compact Riemann surface M is bounded by the L1-norm of the magnetic field B. This implies a similar bound on the multiplicity of the ground state. An example shows that this degeneracy can indeed be comparable with ∫M |B| even in case of the trivial bundle.","lang":"eng"}],"_id":"2740","author":[{"full_name":"Erdös, László","first_name":"László","orcid":"0000-0001-5366-9603","last_name":"Erdös","id":"4DBD5372-F248-11E8-B48F-1D18A9856A87"}],"doi":"10.5802/aif.1936","publication_identifier":{"issn":["0373-0956"]},"date_updated":"2023-07-18T08:38:34Z","volume":52,"extern":"1","type":"journal_article"}