{"status":"public","publisher":"Walter de Gruyter","year":"2013","page":"69 - 151","day":"01","date_published":"2013-07-01T00:00:00Z","oa":1,"citation":{"short":"S. Baier, T.D. Browning, Journal Fur Die Reine Und Angewandte Mathematik (2013) 69–151.","mla":"Baier, Stephan, and Timothy D. Browning. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik, no. 680, Walter de Gruyter, 2013, pp. 69–151, doi:10.1515/crelle.2012.039.","ama":"Baier S, Browning TD. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. 2013;(680):69-151. doi:10.1515/crelle.2012.039","ieee":"S. Baier and T. D. Browning, “Inhomogeneous cubic congruences and rational points on del Pezzo surfaces,” Journal fur die Reine und Angewandte Mathematik, no. 680. Walter de Gruyter, pp. 69–151, 2013.","ista":"Baier S, Browning TD. 2013. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. (680), 69–151.","chicago":"Baier, Stephan, and Timothy D Browning. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter, 2013. https://doi.org/10.1515/crelle.2012.039.","apa":"Baier, S., & Browning, T. D. (2013). Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter. https://doi.org/10.1515/crelle.2012.039"},"month":"07","date_created":"2018-12-11T11:45:24Z","main_file_link":[{"url":"https://arxiv.org/abs/1011.3434","open_access":"1"}],"_id":"245","author":[{"last_name":"Baier","first_name":"Stephan","full_name":"Baier, Stephan"},{"id":"35827D50-F248-11E8-B48F-1D18A9856A87","last_name":"Browning","orcid":"0000-0002-8314-0177","full_name":"Timothy Browning","first_name":"Timothy D"}],"doi":"10.1515/crelle.2012.039","quality_controlled":0,"title":"Inhomogeneous cubic congruences and rational points on del Pezzo surfaces","publication_status":"published","publication":"Journal fur die Reine und Angewandte Mathematik","issue":"680","abstract":[{"text":"For given non-zero integers a, b, q we investigate the density of solutions (x; y) ∈ ℤ2 to the binary cubic congruence ax2 + by3 ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over ℚ.","lang":"eng"}],"date_updated":"2021-01-12T06:57:33Z","publist_id":"7659","extern":1,"type":"journal_article"}