{"type":"journal_article","doi":"10.1016/S0034-4877(07)80074-7","page":"389 - 399","publication":"Reports on Mathematical Physics","day":"01","author":[{"last_name":"Lieb","first_name":"Élliott","full_name":"Lieb, Élliott H"},{"last_name":"Seiringer","first_name":"Robert","full_name":"Robert Seiringer","id":"4AFD0470-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-6781-0521"},{"full_name":"Yngvason, Jakob","last_name":"Yngvason","first_name":"Jakob"}],"month":"06","date_updated":"2021-01-12T06:57:04Z","citation":{"mla":"Lieb, Élliott, et al. “Bose-Einstein Condensation and Spontaneous Symmetry Breaking.” Reports on Mathematical Physics, vol. 59, no. 3, Elsevier, 2007, pp. 389–99, doi:10.1016/S0034-4877(07)80074-7.","ieee":"É. Lieb, R. Seiringer, and J. Yngvason, “Bose-Einstein condensation and spontaneous symmetry breaking,” Reports on Mathematical Physics, vol. 59, no. 3. Elsevier, pp. 389–399, 2007.","apa":"Lieb, É., Seiringer, R., & Yngvason, J. (2007). Bose-Einstein condensation and spontaneous symmetry breaking. Reports on Mathematical Physics. Elsevier. https://doi.org/10.1016/S0034-4877(07)80074-7","chicago":"Lieb, Élliott, Robert Seiringer, and Jakob Yngvason. “Bose-Einstein Condensation and Spontaneous Symmetry Breaking.” Reports on Mathematical Physics. Elsevier, 2007. https://doi.org/10.1016/S0034-4877(07)80074-7.","ista":"Lieb É, Seiringer R, Yngvason J. 2007. Bose-Einstein condensation and spontaneous symmetry breaking. Reports on Mathematical Physics. 59(3), 389–399.","ama":"Lieb É, Seiringer R, Yngvason J. Bose-Einstein condensation and spontaneous symmetry breaking. Reports on Mathematical Physics. 2007;59(3):389-399. doi:10.1016/S0034-4877(07)80074-7","short":"É. Lieb, R. Seiringer, J. Yngvason, Reports on Mathematical Physics 59 (2007) 389–399."},"extern":1,"date_published":"2007-06-01T00:00:00Z","publication_status":"published","issue":"3","_id":"2370","main_file_link":[{"url":"http://arxiv.org/abs/math-ph/0610034","open_access":"1"}],"abstract":[{"lang":"eng","text":"After recalling briefly the connection between spontaneous symmetry breaking and off-diagonal long-range order for models of magnets a general proof of spontaneous breaking of gauge symmetry as a consequence of Bose-Einstein condensation is presented. The proof is based on a rigorous validation of Bogoliubov's c-number substitution for the k = 0 mode operator α0."}],"oa":1,"intvolume":" 59","volume":59,"publist_id":"4556","date_created":"2018-12-11T11:57:16Z","publisher":"Elsevier","year":"2007","title":"Bose-Einstein condensation and spontaneous symmetry breaking","quality_controlled":0,"status":"public"}